

Subject-specific Examination Regulations for Computer Science (Fachspezifische
Prüfungsordnung)

The subject-specific examination regulations for Computer Science and Software Engineering
are defined by this program handbook and are valid only in combination with the General
Examination Regulations for Undergraduate degree programs (General Examination
Regulations = Rahmenprüfungsordnung). This handbook also contains the program-specific
Study and Examination Plan (Chapter 6).

Upon graduation, students in this program will receive a Bachelor of Science (BSc) degree
with a scope of 180 ECTS (for specifics see Chapter 6 of this handbook).

Version Valid as of Decision Details

Fall 2022 – V1 Sep 01, 2022 June 22, 2022

V1 Approved by the
Academic Senate

 July 5, 2022 V1.1 Editorial Changes /
Error corrections in Chapters
1 and 2, as well as the Study
& Examination Plan

 Aug 18, 2022 V1.2 Changes in “Admission
Requirements” and
“Internship / Startup and
Career Skills”

 Sep 19, 2022 V1.3 Editorial change
uniform specialization
module text

Contents

1 Program Overview .. 6

1.1 Concept ... 6

 The Jacobs University Educational Concept .. 6

 Program Concept ... 6

1.2 Specific Advantages of Computer Science and Software Engineering at Jacobs
University .. 7

1.3 Program-specific Educational Aims .. 8

 Qualification Aims.. 8

 Intended Learning Outcomes... 9

1.4 Career Options ... 10

1.5 Admission Requirements ... 10

1.6 More Information and Contact.. 11

2 The Curricular Structure... 12

2.1 General ... 12

2.2 The Curriculum .. 12

 Year 1 ... 12

 Year 2 ... 13

 Year 3 ... 13

3 Computer Science and Software Engineering Undergraduate Program Regulations
 16

3.1 Scope of these Regulations ... 16

3.2 Degree... 16

3.3 Graduation Requirements .. 16

4 Schematic Study Plan for Computer Science and Software Engineering 17

5 Study and Examination Plan ... 18

6 Module Descriptions .. 20

6.1 YEAR 1 ... 20

 Introduction to Computer Science.. 20

 Programming in C and C++ ... 22

 Introduction to Data Science ... 24

 Calculus and Elements of Linear Algebra I .. 26

 Algorithms and Data Structures ... 29

 Introduction to Cyber Physical Systems .. 31

 Software Design and Prototyping ... 33

 Calculus and Elements of Linear Algebra II... 35

 Distributed Development .. 37

6.2 YEAR 2 ... 39

 Databases and Web Services ... 39

 Operating Systems ... 41

 Data Analytics and Modeling ... 43

 Probability and Random Processes .. 45

 Software Engineering.. 47

 Artificial Intelligence (CSSE) ... 49

 Machine Learning .. 51

 Machine Learning Tools .. 53

6.3 YEAR 3 ... 55

 Computer Graphics .. 55

 Computer Networks .. 57

 Web Application Development ... 59

 Human-Computer Interaction .. 61

6.4 Internship / Startup and Career Skills ... 63

6.5 Collaborative Software Project .. 66

6.6 Bachelor Thesis .. 67

7 Appendix ... 69

7.1 Intended Learning Outcomes Assessment Matrix ... 69

5

1 Program Overview

1.1 Concept

 The Jacobs University Educational Concept

Jacobs University aims to educate students for both an academic and a professional career by
emphasizing four core objectives: academic quality, self-development/personal growth,
internationality and the ability to succeed in the working world (employability). Hence, study
programs at Jacobs University offer a comprehensive, structured approach to prepare students
for graduate education as well as career success by combining disciplinary depth and
interdisciplinary breadth with supplemental skills education.

In this context, it is Jacobs University’s aim to educate talented young people from all over the
world, regardless of nationality, religion, and material circumstances, to become citizens of the
world who are able to take responsible roles in the democratic, peaceful, and sustainable
development of the societies in which they live. This is achieved through high-quality teaching,
manageable study loads, and supportive study conditions. Study programs, taught online or in
presence, convey academic knowledge as well as the ability to interact positively with other
individuals and groups in culturally diverse environments. The ability to succeed in the working
world is a core objective for all study programs at Jacobs University, both in terms of actual
disciplinary subject matter and also of social skills and intercultural competence. Study-
program-specific modules and additional specializations provide the necessary depth,
interdisciplinary offerings provide breadth while the collaborative and remote didactical
approach of the modules as well as an extended internship period strengthen the employability
of students. In addition, Jacobs University offers professional advising and counseling.

Jacobs University’s educational concept is highly regarded both nationally and internationally.
While the university has consistently achieved top marks over the last decade in Germany’s
most comprehensive and detailed university ranking by the Center for Higher Education (CHE),
it has also been listed by the renowned Times Higher Education (THE) magazine as one of the
top 300 universities worldwide (ranking group 251-300) in 2019, 2020 and 2021. The THE
ranking is considered as one of the most widely observed university rankings. It is based on five
major indicators: research, teaching, research impact, international orientation, and the volume
of research income from industry.

 Program Concept

Digitalization is a key driver of innovation and success across all industries. Computer Science
and especially Software Engineering are obviously key elements in these processes. At the same
time, there is a substantial change in the way daily work is organized and carried out. The share
of home office and remote work increases, e.g., to collaborate with team members who are
distributed around the world or to control, monitor, and maintain facilities and processes from
a distance. While offering a lot of opportunities in terms of convenience for employees and
reduced costs for employers, this new normal of working also requires different skills and
knowledge of the related tools and methods, which are addressed by this program.

Furthermore, online education is changing the higher education landscape in profound ways. It
caters for specific needs and interests of students, especially in terms of the flexibility in which

6

they can carry out their studies. And it is a natural option to prepare them for the new normal
of remote work.

The bachelor program in Computer Science and Software Engineering uses online education
with high amounts of flipped-classroom elements. This means that students participate in
online courses with pre-dominantly asynchronous lectures and exercise material, which are
complemented by tutorials and hands-on sessions (for the study cohort starting in 2022/23
participation in synchronous online lectures and tutorials with the possibility for synchronous
communication are offered). Students are guided and supported by faculty as well as
experienced tutors and lecturers to transfer the acquired knowledge into practice. The hands-
on elements include high amounts of collaboration with other students, use of tools and
concepts to engage in distributed work from different places in potentially different time-zones,
and remote access to physical devices and set-ups.

The Computer Science core of the program is complemented with Management and Leadership
modules in the final study year. Students will not only be trained in programming and software
development, but will also acquire fundamental knowledge in business and learn how
innovations can be transferred into a marketable product. Furthermore, they may take part in
interdisciplinary courses in which problems are tackled from a wider perspective challenging
them to think outside the boundaries of their discipline.

Overall, by completing their studies, students will be able to directly enter the job market or to
continue their studies in a graduate program, for example the MSc in Computer Science and
Software Engineering offered at Jacobs University. Apart from the solid knowledge and skills
obtained in Computer Science and Software Engineering, graduates are particularly well
prepared for the demands of modern work, i.e. to work remotely and as part of a diverse team.

1.2 Specific Advantages of Computer Science and Software Engineering at Jacobs
University

The Computer Science and Software Engineering program at Jacobs University aims to provide
an application-oriented knowledge of Computer Science and Software Engineering including a
preparation for important aspects of modern professional life, namely remote work and life-long
learning.

The educational approach of the faculty is to relate the theoretical contents of the discipline to
their contemporary application in industry and research. The instructors aim to include recent
developments of the topics covered to demonstrate how basic methods or techniques are
applied today and how the material covered relates to the challenges of digitalization and the
related state of the art in research and development.

• Early involvement in software development project work is an essential aspect of the
study program which further extends the already positively acknowledged educational
approach in Computer Science at Jacobs University.
• The Computer Science faculty’s pedagogy, together with the positive teaching
environment, has been acknowledged in several rankings: In the Computer Science ranking
published by the Centre for Higher Education (CHE) in 2015, the support by instructors
and the relationship to research were ranked 1st of 68 study programs. In the European U-
Multirank ranking published in 2018, the overall learning experience in Computer Science

7

was ranked 10th and research-oriented teaching in Computer Science was ranked 2nd of 304
European universities offering Computer Science programs.
• The involvement of students and alumni in the program development process using a
direct and open dialogue is going to ensure that the program will be constantly fine-tuned
to the specific needs of students, such as covering certain topics at a certain time with
respect to the preparation of internship or job applications.
• Computer Science student teams participate regularly in international programming
competitions. Jacobs University hosted the Northwestern European Regional Contest
(NWERC) of the ACM International Collegiate Programming Contest on campus in 2010 and
2011. Student teams participate in NWERC competitions since then on an annual basis.
In 2014, students organized the first JacobsHack! hackathon on campus, which was
sponsored, among others, by Google, Microsoft, and SAP. The 2018 edition of JacobsHack!,
sponsored, among others, by Facebook, Skyscanner, GitHub and Bloomberg, attracted
participants from all over Europe. As the program features important elements remote
collaborative software development, there is also the option for online students to participate
in according activities if they are interested in them.

1.3 Program-specific Educational Aims

 Qualification Aims

The program is an online program with optional blended elements, e.g., in summer (for the
study cohort starting in 2022/23 participation in synchronous online lectures and tutorials with
the possibility for synchronous communication are offered). Lectures incorporate asynchronous
material and primarily follow a flipped classroom model, i.e., including application components
in the spirit of problem-based- as well as project-based-learning (PBL & PrBL). Practical
components, particularly labs, projects, and thesis are based on remote access, distributed
development. Tutoring includes virtual study groups, peer evaluation and mentoring by faculty.
Performance evaluation are conducted as online e-exams.

The remote work aspects include collaborative software development and remote access to
physical devices for, e.g., control, monitoring and maintenance. Due to the aspects of
independent, self-governed knowledge acquisition, the students are prepared for life-long
learning, where additional knowledge and skills need to be acquired or updated in a regular
fashion, especially in fast moving areas like Computer Science and Software Engineering.

The main subject-specific qualification aim is to enable students to take up qualified
employment in modern industries involving digitalization and information technology or to enter
graduate programs related to Computer Science and Software Engineering. Graduates of the
Computer Science and Software Engineering program have obtained the following
competencies:

• Computer Science and Software Engineering competence
Graduates are familiar with the foundations of Computer Science and they are able to
design and develop software addressing a given application scenario. They are able to
analyze and structure complex problems and they are able to address them using
methods of Computer Science and Software Engineering. Graduates are able to
construct and maintain complex computer systems using a structured, analytic, and
creative approach. They are trained in developing software in collaborative teams in a
remote fashion, i.e., independent of the location they live and work at.

8

• Communication competence
Graduates are able to communicate subject-specific topics convincingly in both spoken
and written form to fellow computer scientists or to customers.

• Teamwork and project management competence
Graduates are able to work effectively in a remote team and they are able to organize
workflows in complex development efforts. They are familiar with tools that support the
development, testing, and maintenance of large software systems and they are able to
take design decisions in a constructive way.

• Learning competence
Graduates have acquired a solid foundation enabling them to assess their own knowledge
and skills, learn effectively, and remain up-to-date with the latest developments in the
rapidly evolving field of Computer Science and Software Engineering.

• Personal and professional competence
Graduates are able to develop a professional profile, justify professional decisions based
on theoretical and methodical knowledge, and critically reflect on their behavior with
respect to their consequences for society.

• Management competence
Graduates have obtained fundamental business and management knowledge supporting
them to pursue a successful career in a corporate environment or with an own start-up
idea.

 Intended Learning Outcomes

By the end of the program, students will be able to:

1. acquire Computer Science and Software Engineering knowledge in an independent, self-
governed way;

2. work in teams distributed around the globe to analyze complex problems, to evaluate
them, and to derive solutions;

3. comprehend the processes and tools of Software Engineering for collaborative, remote
software and systems development;

4. program software in C/C++ and understand algorithms;
5. be able to use libraries and to generate software in core Computer Science areas;
6. apply suited mathematical methods;
7. understand operating systems, databases, and web services;
8. comprehend methods from Artificial Intelligence and Machine Learning;
9. understand the relation between software and its links to the physical world;
10. analyze data and to extract insights from it;
11. apply the acquired Software Engineering skills and Computer Science knowledge in

collaborative, remote projects;
12. use academic or scientific methods as appropriate in the field of Computer Science and

Software Engineering such as defining research questions, justifying methods, collecting,
assessing and interpreting relevant information, and drawing scientifically-founded
conclusions that consider social, scientific and ethical insights;

9

13. develop and advance solutions to problems and arguments in their subject area and
defend these in discussions with specialists and non-specialists;

14. engage ethically with academic, professional and wider communities and to actively
contribute to a sustainable future, reflecting and respecting different views;

15. take responsibility for their own learning, personal and professional development and
role in society, evaluating critical feedback and self-analysis;

16. apply their knowledge and understanding to a professional context;
17. take on responsibility in a diverse team;
18. adhere to and defend ethical, scientific and professional standards.

1.4 Career Options

Digitalization is affecting all areas of business, industry, daily life, and society. There is
accordingly a very high demand for graduates with a background in Computer Science and
Software Engineering in general. In addition, students have been trained to be able to work in
a remote, collaborative fashion and being able to engage in life-long learning, i.e., to acquire or
update knowledge and skills in the fast-moving areas of Computer Science and Software
Engineering in an independent and self-governed way. This offers not only increased flexibility
for graduates to engage in professional opportunities worldwide, it is also a substantial benefit
for potential employers as they may select from an increased pool of talented candidates, whom
they do not need to relocate to work on their job.

The areas of employment are almost unlimited as digitalization is important in business,
industry, daily life, and society. Within these areas, research & development or management
tracks can be taken. The job market includes jobs such as software engineer, information
systems manager, data analyst, computer systems engineer, application developer, IT
consultant, remote maintenance manager, and system analyst.

Jacobs University’s Career Services Center and Alumni Association will help students in their
career development. The Career Services Center provides students with high-quality training
and coaching in application and interview preparation, effective presenting, business etiquette,
and employer research as well as many other career aspects. It helps students select and achieve
rewarding careers after their graduation from Jacobs University. In addition, the Alumni
Association helps students establish a long-lasting worldwide network they can use to explore
career opportunities in industry and academia.

1.5 Admission Requirements

Admission to Jacobs University is selective and based on a candidate’s school and/or university
achievements, recommendations, self-presentation, and performance on required standardized
tests. Students admitted to Jacobs University demonstrate exceptional academic achievements,
intellectual creativity, and the desire and motivation to make a difference in the world.

The following documents need to be submitted with the application:

• Recommendation Letter (optional)
• Official or certified copies of high school/university transcripts
• Educational History Form
• Standardized test results (SAT/ACT) if applicable
• Motivation statement

10

• ZeeMee electronic resume (optional)
• Language proficiency test results (TOEFL, IELTS or equivalent)

Formal admission requirements are subject to higher education law and are outlined in the
Admission and Enrollment Policy of Jacobs University.

For more detailed information about the admission visit: https://www.jacobs-
university.de/study/undergraduate/application-information

1.6 More Information and Contact

For more information, please contact the study program chair:

Prof. Dr. Andreas Birk, Study and Program Chair

Professor of Electrical Engineering & Computer Science

Email: a.birk@jacobs-university.de

Telephone: +49 421 200-3113

or visit our program website: https://www.jacobs-
university.de/study/undergraduate/programs/computer-science-and-software-engineering-bsc

https://www.jacobs-university.de/study/undergraduate/application-information
https://www.jacobs-university.de/study/undergraduate/application-information
https://jacobsuniversity.sharepoint.com/sites/Proj.ProgramHandbooks-19CSSE/Shared%20Documents/19%20CSSE/Handbook/a.birk@jacobs-university.de
https://www.jacobs-university.de/study/undergraduate/programs/computer-science-and-software-engineering-bsc
https://www.jacobs-university.de/study/undergraduate/programs/computer-science-and-software-engineering-bsc

11

2 The Curricular Structure

2.1 General

The curricular structure provides multiple elements for enhancing employability,
interdisciplinarity, and internationality. Additionally, a mandatory internship (or work in a start-
up) of at least two months after the second year of study gives students opportunities to gain
insight into the professional world, apply their intercultural competences and reflect on their
roles and ambitions for employment and in a globalized society.

All undergraduate programs at Jacobs University are based on a coherently modularized
structure, which provides students with a certain degree of flexibility regarding their individual
study path and which ensures that they can complete their studies within the regular period.

The framework policies and procedures regulating undergraduate study programs at Jacobs
University can be found on the website (https://www.jacobs-university.de/academic-policies).

2.2 The Curriculum

 Year 1

The first study year is characterized by a university-specific offering of disciplinary education
that builds on and expands upon the students’ entrance qualifications. Students take
introductory modules for a total of 60 CP from the Year 1 area. The Academic Advising
Coordinator offers curriculum counseling to all Bachelor students independently of their major,
while Academic Advisors, in their capacity as contact persons from the faculty, support students
individually in deciding on their major study program.

Computer Science and Software Engineering students take the following mandatory modules in
the first semester (30 CP)

• Module: Introduction to Computer Science (7.5 CP)
• Module: Programming in C/C++ (7.5 CP)
• Module: Introduction to Data Science (7.5 CP)
• Module: Calculus and Linear Algebra I (5 CP)
• Module: Distributed Development (Part 1) (2.5 CP)

and the following modules in the second semester (30 CP):

• Module: Algorithms and Data Structures (7.5 CP)
• Module: Introduction to Cyber Physical Systems (7.5 CP)
• Module: Software Design and Prototyping (7.5 CP)
• Module: Calculus and Linear Algebra II (5 CP)
• Module: Distributed Development (Part 2) (2.5 CP)

The modules Programming in C and C++ and Algorithms and Data Structures introduce students
to imperative and object-oriented programming and basic algorithms and data structures. The
Introduction to Computer Science module discusses abstract and concrete notions of computing
machines and algorithms, and the representation of information. Students are also exposed to
a pure functional programming language. The Software Design and Prototyping module deals
with prototyping software, also known as mockup systems. It is complemented by the

https://www.jacobs-university.de/academic-policies

12

Distributed Development module that deals with practical aspects of remotely developing
software in teams distributed at different physical locations. The module Introduction to Cyber
Physical Systems deals with the relations and interfaces of software to computer hardware,
embedded systems, sensors and actuators, and networking. Relevant mathematical content is
covered in the Calculus and Linear Algebra modules and in the Introduction to Data Science
module.

 Year 2

In their second year, students take a total of 50 CP from a selection of in-depth, discipline-
specific modules. Building on the introductory Year 1 modules and applying the methods and
skills students have already acquired so far, these modules aim to expand the students’ critical
understanding of the key theories, principles, and methods in their major for the current state
of knowledge and best practice.

In Year 2, Computer Science and Software Engineering students acquire the following
mandatory modules (50 CP in total):

• Module: Databases and Web Services (7.5 CP)
• Module: Operating Systems (7.5 CP)
• Module: Data Analytics and Modeling (7.5 CP)
• Module: Probability and Random Processes (5 CP)
• Module: Software Engineering (7.5 CP)
• Module: Artificial Intelligence (CSSE) (7.5 CP)
• Module: Machine Learning (5 CP)
• Module: Machine Learning Tools (2.5 CP)

In the second year, core areas of Computer Science with a high relevance to modern software
development are covered in the modules Databases and Web Services, Operating Systems,
Artificial Intelligence (CSSE), and Machine Learning. Knowledge in Software Engineering itself
is deepened in the according module. Relevant mathematical aspects are covered in the
modules Probability and Random Processes and Data Analytics, where the latter – together with
Artificial Intelligence (CSSE) and Machine Learning – also deepens the knowledge related to
Data Science. Multiple modules include practical software development aspects, namely
Software Engineering, Databases and Web Services, Artificial Intelligence (CSSE), Machine
Learning, Machine Learning Tools and Data Analytics and Modeling.

The remaining 10 CP can be chosen from the Elective area, which includes selected German
language, mathematics and skills, and problem-solving oriented modules that tackle global
challenges beyond disciplinary boundaries. An updated list of all modules in the Elective area
will be available in the online course catalogue at the start of the second academic year.

 Year 3

During their third year, students prepare for and make decisions about their career after
graduation. To explore available choices fitting individual interests, and to gain professional
experience, students take a mandatory summer internship (see 2.2.3.1). The third year of
studies allows Computer Science and Software Engineering students to take CSSE
Specialization modules, mandatory Management modules and one further Elective module (as
described in Chapter 2.2.2).

13

2.2.3.1 Internship/Startup and Career Skills Module

As a core element of Jacobs University’s employability approach students are required to engage
in a mandatory two-month internship of 15 CP that will usually be completed during the summer
between the second and third years of study. This gives students the opportunity to gain first-
hand practical experience in a professional environment, apply their knowledge and
understanding in a professional context, reflect on the relevance of their major to employment
and society, reflect on their own personal role in employment and society, and develop a
professional orientation. The internship can also establish valuable contacts for the students’
bachelor’s thesis project, for the selection of a master program graduate school or further
employment after graduation. This module is complemented by career advising and several
career skills workshops throughout all six semesters that prepare students for the transition from
student life to professional life. As an alternative to the full-time internship, students interested
in setting up their own company can apply for a start-up option to focus on developing their
business plans.

For further information, please contact the Career Services Center https://www.jacobs-
university.de/career-services)

2.2.3.2 CSSE Specialization Modules

In the third year of their studies, students take 15 CP of advanced CSSE Specialization modules
to consolidate their knowledge and to be exposed to state-of-the-art research in the areas of
their interest. This curricular component is offered as a portfolio of modules, from among which
students can select freely during their fifth and sixth semester. The default module size is 5
CP, with smaller 2.5 CP modules being possible as justified exceptions.

Computer Science and Software Engineering students take at least 15 CP from the following
abridged list of CSSE Specialization Modules:

• CSSE Specialization Module: Computer Graphics (5 CP)
• CSSE Specialization Module: Computer Networks (5 CP)
• CSSE Specialization Module: Web Application Development (5 CP)
• CSSE Specialization Module: Human Computer Interaction (5 CP)

An updated list of all modules in the CSSE Specialization area will be available in the online
course catalogue at the start of the third academic year.

2.2.3.3 Management Modules

Students take 10 CP from the Management area to acquire valuable knowledge in the field of
business and management. Modules in this area aim to bridge the gap from software
development to marketable software products and to prepare students interested in a
management-oriented career track.

A broad spectrum of topics is tackled, such as product development, innovation, marketing,
leadership, general business, and change management.

An updated list of all modules in the Management area will be available in the online course
catalogue at the start of the third academic year.

https://www.jacobs-university.de/career-services
https://www.jacobs-university.de/career-services

14

2.2.3.4 Collaborative Software Project

In the collaborative software project, the students deepen their knowledge and skills in one or
multiple areas of the first and especially second year. They are exposed to state-of-the-art
research with the goal to derive ideas and strategies to address application-oriented problems
and to develop software for them. Students learn how to organize and execute an application-
oriented research and development (R&D) project. Students are expected to organize
themselves in group work under the guidance of the instructor.

2.2.3.5 Bachelor Thesis

This module is a mandatory graduation requirement for all undergraduate students. The title of
the thesis will appear on the students’ transcripts.

Within this module, students apply the knowledge skills, and methods they have acquired in
their major discipline to become acquainted with actual research topics, ranging from the
identification of suitable (short-term) research projects, preparatory literature searches, the
realization of discipline-specific research, and the documentation, discussion, and
interpretation of the results.

With their Bachelor Thesis students demonstrate mastery of the contents and methods of their
major-specific research field. Furthermore, students show the ability to analyze and solve a well-
defined problem with scientific approaches, a critical reflection of the status quo in scientific
literature, and the original development of their own ideas. With the permission of a Jacobs
Faculty Supervisor, the Bachelor Thesis can also have an interdisciplinary nature.

15

3 Computer Science and Software Engineering Undergraduate Program Regulations

3.1 Scope of these Regulations

The regulations in this handbook are valid for all students who entered the Computer Science
and Software Engineering undergraduate program at Jacobs University in Fall 2022. In case of
a conflict between the regulations in this handbook and the general Policies for Bachelor
Studies, the latter apply (see https://www.jacobs-university.de/academic-policies).

In exceptional cases, certain necessary deviations from the regulations of this study handbook
might occur during the course of study (e.g., change of the semester sequence, assessment
type, or the teaching mode of courses). Jacobs University Bremen reserves therefore the right
to modify the regulations of the program handbook.

3.2 Degree

Upon successful completion of this study program, students are awarded a Bachelor of Science
degree in Computer Science and Software Engineering.

3.3 Graduation Requirements

In order to graduate, students need to obtain 180 CP. In addition, the following graduation
requirements apply:

Students need to complete all mandatory components of the program as indicated in the Study
and Examination Plan in Chapter 5 of this handbook.

https://www.jacobs-university.de/academic-policies

16

Figure 1: Schematic Study Plan for Computer Science and Software Engineering

4 Schematic Study Plan for Computer Science and Software Engineering

Figure 1 shows schematically the sequence and types of modules required for the study program. A more detailed description, including the assessment types,
is given in the Study and Examination Plans in the following section.

Internship (Summer) (15 CP)

BSc Degree in Computer Science and Software Engineering at Jacobs University (180 CP)

Introduction to Computer
Science

(m, 7.5 CP)

Algorithms and Data Structures
(m, 7.5 CP)

Introduction to Cyber Physical
Systems (m, 7.5 CP)

Programming in C/C++
(m, 7.5 CP)

Software Design and
Prototyping

(m, 7.5 CP)

Databases and Web Services
(m, 7.5 CP)

Operating Systems
(m, 7.5 CP)

Introduction to Data Science
(m, 7.5 CP)

Ye
ar

 3

Software Engineering
(m, 7.5 CP)

Collaborative Software Project
(m, 5 CP)

CSSE Specialization
(me, 5 CP)

Ye
ar

 2
Ye

ar
 1

m

Bachelor Thesis
(m, 10 CP)

CSSE Specialization
(me, 2 x 5 CP)

Artificial Intelligence (CSSE)
(m, 7.5 CP)

Machine Learning +
Machine Learning Tools

(m, 7.5 CP)

m = mandatory
me = mandatory elective
1 = Options, e.g. (a) German; (b) Academic Skills in CS & Legal and Ethical Aspects of Computer Science
2,3 = Options, e.g. (a) Numerical Methods; (b) Ethics and Science in Technology; (c) Global Existential Risks

Calculus and Elements
of Linear Algebra I

(m, 5 CP)

Calculus and Elements
of Linear Algebra II

(m, 5 CP)
Distributed

Develop-
ment

(m, 5 CP)

Data Analytics and Modeling
(m, 7.5 CP)

Probability and Random
Processes

(m, 5 CP)

Elective²
(me, 5 CP)

Elective1

(me, 5 CP)

Management
(me, 10 CP)

Elective³
(me, 5 CP)

17

5 Study and Examination Plan

Computer Science and Software Engineering (CSSE) BSc
Matriculation Fall 2022

Program-Specific Modules Type Assessment Period Status¹ Sem. CP
Year 1 60
Take all the mandatory YEAR 1 modules listed below, as this is a requirement for the Computer Science and Software Engineering program.
CH-232 Module: Introduction to Computer Science5 m 1 7.5
CH-232-A Introduction to Computer Science Lecture Written examination Examination period 7.5
CH-230 Module: Programming in C and C++ m 1 7.5
CH-230-A Programming in C and C++ Lecture Written examination Examination period 2.5
CH-230-B Programming in C and C++ Tutorial Tutorial Practical assessment During the semester 5

CH-700 Module: Introduction to Data Science m 1 7.5
CH-700-A Introduction to Data Science Lecture Written examination Examination period 7.5
JTMS-MAT-09 Module: Calculus and Elements of Linear Algebra I m 1 5
JTMS-09 Calculus and Elements of Linear Algebra I Lecture Written examination Examination period 5
CH-231 Module: Algorithms and Data Structures m 2 7.5
CH-231-A Algorithms and Data Structures Lecture Written examination Examination period 7.5
BCSSE-Y1-02 Module: Introduction to Cyber Physical Systems m 2 7.5
BCSSE-Y1-CPS-A Introduction to Cyber Physical Systems (CPS) Lecture Lecture Written examination Examination period 5
BCSSE-Y1-CPS-B Introduction to Cyber Physical Systems (CPS) Tutorial Tutorial Assignments During the semester 2.5
BCSSE-Y1-03 Module: Software Design and Prototyping m 2 7.5
BCSSE-Y1-SDP-A Software Design and Prototyping Lecture Lecture Written examination Examination period 5
BCSSE-Y1-SDP-B Software Design and Prototyping Tutorial Tutorial Project During the semester 2.5
JTMS-MAT-10 Module: Calculus and Elements of Linear Algebra II m 2 5
JTMS-10 Calculus and Elements of Linear Algebra II Lecture Written examination Examination period 5

BCSSE-Y1-01 Module: Distributed Development m 1/2 5
BCSSE-Y1-DD-A Distributed Development I Lecture & Lab Practical assessment During the semester 1 2.5
BCSSE-Y1-DD-B Distributed Development II Lecture & Lab Practical assessment During the semester 2 2.5

Year 2 60
Take all the mandatory YEAR 2 modules listed below (50 CP), as this is a requirement for the Computer Science and Software Engineering program.Further, please choose 10 CP of Electives.
CO-560 Module: Databases and Web Services m 3 7.5
CO-560-A Databases and Web Services - Lecture Lecture Written examination Examination period 5
CO-560-B Databases and Web Services - Project Project Project During the semester 2.5

CO-562 Module: Operating Systems m 3 7.5
CO-562-A Operating Systems Lecture Written examination Examination period 7.5
CO-710 Data Analytics and Modeling m 3 7.5
CO-710-A Data Analytics and Modeling Lecture Written examination Examination period 7.5
JTMS-MAT-12 Module: Probability and Random Processes m 3 5
JTMS-12 Probability and Random Processes Lecture Written examination Examination period 5

CO-561 Module: Software Engineering m 4 7.5
CO-561-A Software Engineering Lecture Written examination Examination period 2.5
CO-561-B Software Engineering Project Project Project During the semester 5
CO-547 Module: Artificial Intelligence m 4 7.5
CO-547-A Artificial Intelligence Lecture Written examination Examination period 5
xxx Artificial Intelligence Tutorial (CSSE) Tutorial Assignments During the semester 2.5
xxx Module: Machine Learning + Machine Learning Tools m 4 7.5
CO-541-A Machine Learning Lecture Written examination Examination period 5
xxx Machine Learning Tools Lab Lab Assignments During semester 2.5

Electives² m 3/4 10
Take a total of 10 CP CSSE Electives

Y 3 60

18

 f
Year 3 60
Take all mandatory Year 3 modules listed below (30 CP). Further, select 15 CP of CSSE Specialization Modules, 10 CP of Management Modules and 5 CP of Elective Modules.
CA-INT-900 Module: Summer Internship m 4/5 15
CA-INT-900-0 Summer Internship Report During the 5th semester 15
xxx Module: Thesis / Seminar CSSE m 6 10
xxx Thesis CSSE Thesis Thesis 15th of May 10
xxx Module: Collaborative Software Project m 5 5
xxx Collaborative Software Project Project Project report During the semester 5

CSSE Specialization Modules³ m 5/6 15
Take a total of 15 CP CSSE Specialization Modules
Management Modules4 m 5/6 10
Take a total of 10 CP Management Modules.
Electives² m 6 5
Take a total of 5 CP Electives

Total CP 180
¹ Status (m = mandatory, me = mandatory elective)
² For a full listing of all Elective modules please consult the current online course catalogue and /or the study program handbooks.
³ For a full listing of all CSSE Specialization modules please consult the current online course catalogue and /or the study program handbooks.
4 For a full listing of all Management modules please consult the current online course catalogue and /or the study program handbooks.

Figure 2: Study and Examination Plan

19

6 Module Descriptions

6.1 YEAR 1

 Introduction to Computer Science

Module Name Module Code Level (type) CP
Introduction to Computer Science CH-232 Year 1

(CHOICE)
7.5

Module Components

Number Name Type CP

CH-232-A Introduction to Computer Science Lecture 7.5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, CSSE,
ECE and RIS

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Every semester
(Fall/Spring)

Forms of Learning and
Teaching

• Class (online) (52.5

hours)
• Independent study

(115 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

It is recommended that students install a Linux system such as Ubuntu on their notebooks and that they become
familiar with basic tools such as editors (vim or emacs) and the basics of a shell. The Glasgow Haskell Compiler
(GHC) will be used for implementing Haskell programs.

Content and Educational Aims

The module introduces fundamental concepts and techniques of computer science in a bottom-up manner. Based
on clear mathematical foundations (which are developed as needed), the course discusses abstract and concrete
notions of computing machines, information, and algorithms, focusing on the question of representation versus
meaning in Computer Science.

The module introduces basic concepts of discrete mathematics with a focus on inductively defined structures, to
develop a theoretical notion of computation. Students will learn the basics of the functional programming
language Haskell because it treats computation as the evaluation of pure and typically inductively defined
functions. The module covers a basic subset of Haskell that includes types, recursion, tuples, lists, strings, higher-
order functions, and finally monads. Back on the theoretical side, the module covers the syntax and semantics of
Boolean expressions and it explains how Boolean algebra relates to logic gates and digital circuits. On the
technical side, the course introduces the representation of basic data types such as numbers, characters, and

20

strings as well as the von Neuman computer architecture. On the algorithmic side, the course introduces the
notion of correctness and elementary concepts of complexity theory (big O notation).

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain basic concepts such as the correctness and complexity of algorithms (including the big O
notation);

2. illustrate basic concepts of discrete math (sets, relations, functions);
3. recall basic proof techniques and use them to prove properties of algorithms;
4. explain the representation of numbers (integers, floats), characters and strings, and date and time;
5. summarize basic principles of Boolean algebra and Boolean logic;
6. describe how Boolean logic relates to logic gates and digital circuits;
7. outline the basic structure of a von Neumann computer;
8. explain the execution of machine instructions on a von Neumann computer;
9. describe the difference between assembler languages and higher-level programming languages;
10. define the differences between interpretation and compilation;
11. illustrate how an operating system kernel supports the execution of programs;
12. determine the correctness of simple programs;
13. write simple programs in a pure functional programming language.

Indicative Literature

Eric Lehmann, F. Thomson Leighton, Albert R. Meyer: Mathematics for Computer Science, online 2018.

David A. Patterson, John L Hennessy: Computer Organization and Design: The Hardware/Software Interface, 4th
edition, Morgan Kaufmann, 2011.

Miran Lipovaca: Learn You a Haskell for Great Good!: A Beginner's Guide, 1st edition, No Starch Press, 2011.

Usability and Relationship to other Modules

• Mandatory for a major in CS, CSSE, ECE and RIS
• Pre-requisite for the CORE modules Automata, Computability, and Complexity and Operating Systems
• This module introduces key mathematical concepts and various notions of computing machines and

computing abstractions and is in particularly important for subsequent courses covering theoretical
aspects of computer science. This module is also important for courses that require a basic
understanding of computer architecture and program execution at the hardware level.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

Module achievement: 50% of the assignments correctly solved

This module introduces the functional programming language Haskell. Students develop their functional
programming skills by solving programming problems. The module achievement ensures that a sufficient level of
practical programming and problem-solving skills has been obtained.

21

 Programming in C and C++

Module Name Module Code Level (type) CP
Programming in C and C++ CH-230 Year 1

(CHOICE)
7.5

Module Components

Number Name Type CP

CH-230-A Programming in C and C++ Lecture 2.5

CH-230-B Programming in C and C++ - Tutorial Tutorial 5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, CSSE,
RIS and ECE

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

☒ None

Frequency

Annually
(Fall)

Forms of Learning and
Teaching
• Lecture attendance

(online) (17.5 hours)
• Tutorial attendance (35

hours)
• Independent study

(115 hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

It is recommended that students install a suitable programming environment on their notebooks. It is
recommended to install a Linux system such as Ubuntu, which comes with open-source compilers such as gcc
and g++ and editors such as vim or emacs. Alternatively, the open-source Code: Blocks integrated development
environment can be installed to solve programming problems.

Content and Educational Aims

This course offers an introduction to programming using the programming languages C and C++. After a short
overview of the program development cycle (editing, preprocessing, compiling, linking, executing), the module
presents the basics of C programming. Fundamental imperative programming concepts such as variables, loops,
and function calls are introduced in a hands-on manner. Afterwards, basic data structures such as
multidimensional arrays, structures, and pointers are introduced and dynamically allocated multidimensional
arrays and linked lists and trees are used for solving simple practical problems. The relationships between pointers
and arrays, pointers and structures, and pointers and functions are described, and they are illustrated using
examples that also introduce recursive functions, file handling, and dynamic memory allocation.

The module then introduces basic concepts of object-oriented programming languages using the programming
language C++ in a hands-on manner. Concepts such as classes and objects, data abstractions, and information
hiding are introduced. C++ mechanisms for defining and using objects, methods, and operators are introduced
and the relevance of constructors, copy constructors, and destructors for dynamically created objects is explained.
Finally, concepts such as inheritance, polymorphism, virtual functions, and overloading are introduced. The
learned concepts are applied by solving programming problems.

22

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain basic concepts of imperative programming languages such as variables, assignments, loops,
and function calls;

2. write, test, and debug programs in the procedural programming language C using basic C library
functions;

3. demonstrate how to use pointers to create dynamically allocated data structures such as linked lists;
4. explain the relationship between pointers and arrays;
5. illustrate basic object-oriented programming concepts such as objects, classes, information hiding,

and inheritance;
6. give original examples of function and operator overloading and polymorphism;
7. write, test, and debug programs in the object-oriented programming language C++.

Indicative Literature

Brian Kernighan, Dennis Ritchie: The C Programming Language, 2nd edition, Prentice Hall Professional Technical
Reference, 1988.

Steve Oualline: Practical C Programming, 3rd edition, O'Reilly Media, 1997.

Bruce Eckel: Thinking in C++: Introduction to Standard C++, Prentice Hall, 2000.

Bruce Eckel, Chuck Allison: Thinking in C++: Practical Programming, Prentice Hall, 2004.

Bjarne Stroustrup: The C++ Programming Language, 4th edition, Addison Wesley, 2013.

Michael Dawson: Beginning C++ Through Game Programming, 4th edition, Delmar Learning, 2014.

Usability and Relationship to other Modules

• Mandatory for a major in CS, CSSE, RIS, and ECE
• Mandatory for a minor in CS and RIS
• Pre-requisite for the CHOICE module Algorithms and Data Structures
• Elective for all other undergraduate study programs
• This module introduces the programming languages C and C++ and several other modules build on this

foundation. Certain features of C++ such as templates and generic data structures and an overview of
the standard template library will be covered in the Algorithms and Data Structures module.

Examination Type: Module Component Examinations

Component 1: Lecture

Assessment types: Written examination Duration: 120 min
 Weight: 33%
Scope: All theoretical intended learning outcomes of the module

Component 2: Tutorial

Assessment: Practical assessment (Programming assignments)
 Weight: 67%
Scope: All practical intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

23

 Introduction to Data Science

Module Name Module Code Level (type) ECTS

Introduction to Data Science

CH-700 Year 1 7.5

Module Components

Number Name Type ECTS

CH-700-A Introduction to Data Science Lecture 7.5

Module
Coordinator

Program Affiliation

• Minor in Data Science

Mandatory Status

Mandatory for CSSE and
Minor in Data Science

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lectures
(hybrid/online)
(52.5 hours)

• Private Study
(135 hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

None.

Content and Educational Aims

The module introduces data science with an integrated presentation of three essential components, namely, (1)
societal/legal implications and business opportunities, (2) technical/theoretical background and case studies, (3)
an introduction to the Python coding environment. The first component entails a conceptual introduction to the
opportunities and the challenges of a digitally transformed and data-driven society, presentations on industry
standards and legal frameworks, and discussions of critical issues such as cybersecurity and surveillance. The
second component includes topics such as data science terminology, digital data and their representations, and
introductions to exploratory data analysis and prominent supervised and unsupervised learning tasks. The third
component offers an introduction to the Python ecosystem of data representation, processing, analysis, and
visualization, starting with Jupyter notebooks, installing suitable environments, and introductions to data science
related packages such as NumPy, SciPy, Matplotlib, Seaborn, and Pandas. Fundamental data science concepts
are summarized and illustrated using real-world data from various disciplines. Flexible educational formats (mostly
online and hybrid) allow for asynchronous learning. Lectures are combined with an exposure to Python
programming and data processing and visualization environments, including hands-on practicals, examples, and
exercises.

24

Intended Learning Outcomes

By the end of this module, students will be able to

• explain societal implications of the digital transformation,
• understand the legal data protection framework,
• carry out basic data processing and visualization tasks,
• apply fundamental data science methods to structured data,
• understand the logic of Python scripts and functions,
• compose Python code using templates

Indicative Literature

 Ani Adhikari, John DeNero, David Wagner. Computational and Inferential Thinking: The Foundations of Data
Science. Originally developed for the UC Berkeley course Data 8: Foundations of Data Science. An online
version of the textbook is available at https://inferentialthinking.com/.
 The Alan Turing Institute, Data Science for the Social Good.
 Philip D . Brooker. Programing with Python for Social Scientists. Sage 2020.
 Shin Takahasi, Iroha Inoue. The Manga Guide to Linear Algebra. Trend-Pro 2012.
 Steven S. Skiena. The Data Science Design Manual. Springer 2017.
 Jake Vanderplas. Python Data Science Handbook. O'Reilly 2016. An online version is available at
https://jakevdp.github.io/PythonDataScienceHandbook/.
 Shoshana Zuboff. The Age of Surveillance Capitalism. London: Profile 2019.

Usability and Relationship to other Modules

•

Examination Type: Module Examination

Type: Written Examination Duration/Length: 180 min
Scope: All intended learning outcomes of the module. Weight: 100 %

Module achievement: 50% of the assignments need to be correctly solved.

http://data8.org/
https://inferentialthinking.com/
https://www.turing.ac.uk/collaborate-turing/data-science-social-good
https://jakevdp.github.io/PythonDataScienceHandbook/

25

 Calculus and Elements of Linear Algebra I

Module Name Module Code Level (type) CP
Calculus and Elements of Linear Algebra I JTMS-MAT-09 Year 1

(Methods)
5

Module Components

Number Name Type CP

JTMS-09 Calculus and Elements of Linear Algebra I Lecture 5

Module
Coordinator

Dr. Keivan Mallahi
Karai, Prof. Dr.
Tobias Preußer

Program Affiliation

• Jacobs Track – Methods and Skills

Mandatory Status

Mandatory for CS,
CSSE, ECE, RIS, MATH
and Physics
Mandatory elective for
EES

Entry
Requirements

Pre-requisites

☒ None

Co-
requisites

☒ None

Knowledge, Abilities, or Skills

• Knowledge of Pre-

Calculus at High School
level (Functions, inverse
functions, sets, real
numbers, polynomials,
rational functions,
trigonometric functions,
logarithm and exponential
function, parametric
equations, tangent lines,
graphs, elementary
methods for solving
systems of linear and
nonlinear equations)

• Knowledge of Analytic
Geometry at High School
level (vectors, lines,
planes, reflection,
rotation, translation, dot
product, cross product,
normal vector, polar
coordinates)

• Some familiarity with
elementary Calculus
(limits, derivative) is
helpful, but not strictly
required.

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lectures (online)

(35 hours)
• Private study (90

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review all of higher-level High School Mathematics, in particular the topics explicitly named in “Entry
Requirements – Knowledge, Ability, or Skills” above.

26

Content and Educational Aims

This module is the first in a sequence introducing mathematical methods at the university level in a form relevant
for study and research in the quantitative natural sciences, engineering, Computer Science, and Mathematics.
The emphasis in these modules is on training operational skills and recognizing mathematical structures in a
problem context. Mathematical rigor is used where appropriate. However, a full axiomatic treatment of the subject
is provided in the first-year modules “Analysis I” and “Linear Algebra”.

The lecture comprises the following topics

• Brief review of number systems, elementary functions, and their graphs
• Brief introduction to complex numbers
• Limits for sequences and functions
• Continuity
• Derivatives
• Curve sketching and applications (isoperimetric problems, optimization, error propagation)
• Introduction to Integration and the Fundamental Theorem of Calculus
• Review of elementary analytic geometry
• Vector spaces, linear independence, bases, coordinates
• Matrices and matrix algebra
• Solving linear systems by Gauss elimination, structure of general solution
• Matrix inverse

Intended Learning Outcomes
By the end of the module, students will be able to

• apply the methods described in the content section of this module description to the extent that they
can solve standard text-book problems reliably and with confidence;

• recognize the mathematical structures in an unfamiliar context and translate them into a mathematical
problem statement;

• recognize common mathematical terminology used in textbooks and research papers in the quantitative
sciences, engineering, and mathematics to the extent that they fall into the content categories covered
in this module.

Indicative Literature

S.I. Grossman (2014). Calculus of one variable, 2nd edition. Cambridge: Academic Press.
S.A. Leduc (2003). Linear Algebra. Hoboken: Wiley.
K. Riley, M. Hobson, S. Bence (2006). Mathematical Methods for Physics and Engineering, third edition.
Cambridge: Cambridge University Press.
Usability and Relationship to other Modules

• The module is a mandatory / mandatory elective module of the Methods and Skills area that is part of
the Jacobs Track (Methods and Skills modules; Community Impact Project module; Language modules;
Big Questions modules).

• The module is followed by “Calculus and Elements of Linear Algebra II”. All students taking this module
are expected to register for the follow-up module.

• A rigorous treatment of Calculus is provided in the module “Analysis I”. All students taking “Analysis
I” are expected to either take this module or exceptionally satisfy the conditions for advanced placement
as laid out in the Jacobs Academic Policies for Undergraduate Study.

• The second-semester module “Linear Algebra” will provide a complete proof-driven development of the
theory of Linear Algebra. Students enrolling in “Linear Algebra” are expected to have taken this module;
in particular, the module “Linear Algebra” will assume that students are proficient in the operational
aspects of Gauss elimination, matrix inversion, and their elementary applications.

• This module is a prerequisite for the module “Applied Mathematics” which develops more advanced
theoretical and practical mathematical tools essential for any physicist or mathematician.

• Mandatory for a major in CS, CSSE, ECE, RIS, MATH and Physics
• Mandatory elective for a major in EES.
• Pre-requisite for Calculus and Elements of Linear Algebra II
• Elective for all other study programs.

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of this module

27

 Algorithms and Data Structures

Module Name Module Code Level (type) CP
Algorithms and Data Structures CH-231 Year 1

(CHOICE)
7.5

Module Components

Number Name Type CP

CH-231-A Algorithms and Data Structures Lecture 7.5

Module
Coordinator

Dr. Kinga
Lipskoch

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS, CSSE
and RIS

Entry
Requirements

Pre-requisites

☒
Programming in
C and C++

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance
(online) (52.5
hours)

• Independent
study (115 hours)

• Exam preparation
(20 hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students should refresh their knowledge of the C and C++ programming language and be able to solve simple
programming problems in C and C++. Students are expected to have a working programming environment.

Content and Educational Aims

Algorithms and data structures are the core of computer science. An algorithm is an effective description for
calculations using a finite list of instructions that can be executed by a computer. A data structure is a concept
for organizing data in a computer such that data can be used efficiently. This introductory module allows students
to learn about fundamental algorithms for solving problems efficiently. It introduces basic algorithmic concepts;
fundamental data structures for efficiently storing, accessing, and modifying data; and techniques that can be
used for the analysis of algorithms and data structures with respect to their computational and memory
complexities. The presented concepts and techniques form the basis of almost all computer programs.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain asymptotic (time and memory) complexities and respective notations;
2. able to prove asymptotic complexities of algorithms;
3. illustrate basic data structures such as arrays, lists, queues, stacks, trees, and hash tables;
4. describe algorithmic design concepts and apply them to new problems;
5. explain basic algorithms (sorting, searching, graph algorithms, computational geometry) and their

complexities;

28

6. summarize and apply C++ templates and generic data structures provided by the standard C++
template library.

Indicative Literature

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Introduction to Algorithms, 3rd
edition, MIT Press, 2009.

Donald E. Knuth: The Art of Computer Programming: Fundamental Algorithms, volume 1, 3rd edition, Addison
Wesley Longman Publishing, 1997.

Usability and Relationship to other Modules

• Mandatory for a major in CS, CSSE and RIS
• Mandatory for a minor in CS
• Pre-requisite for the following CORE modules:

o Databases and Web Services
o Software Engineering
o Legal and Ethical Aspects of Computer Science
o Computer Graphics
o Distributed Algorithms

• Familiarity with basic algorithms and data structures is fundamental for almost all advanced modules in
computer science. This module additionally introduces advanced concepts of the C++ programming
language that are needed in advanced programming-oriented modules in the 2nd and 3rd years of the CS
and RIS programs.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

29

 Introduction to Cyber Physical Systems

Module Name
Introduction to Cyber Physical Systems (CPS)

Module Code

Level (type)
Year 1

CP
7.5

Module Components

Number Name Type CP

 Introduction to Cyber Physical Systems (CPS) Lecture Lecture 5

 Introduction to Cyber Physical Systems (CPS) Tutorial Tutorial 2.5

Module
Coordinator
NN

Program Affiliation

• BSc Computer Science and Software Engineering

Mandatory Status

Mandatory for CSSE

Entry
Requirements

Pre-requisites

☒ Calculus and
Elements of
Linear Algebra I

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (online) (35

hours)
• Tutorials (17.5 hours)
• Private study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students are expected to be familiar with the core elements of calculus and linear algebra.

Content and Educational Aims

The area of Cyber Physical Systems (CPS) deals with the interface between the digital and the physical world,
i.e., the relations and interfaces of software to computer hardware, embedded systems, sensors and actuators,
and networking. Application examples range from large entities like power-grids, factories, or warehouses, down
to smaller systems like automobiles, home automation, or machinery in production or warehouses. CPS builds on
interconnected smart devices and intelligent autonomous systems, which may range from small simple sensor-
nodes to more capable systems that may also features mobility and manipulation. It hence relates software
development to aspects of computer architecture, communications, system integration, modelling, control, and
artificial intelligence.

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. Describe the different use-cases and application areas of CPS
2. Explain the components of CPS and their interplay
3. Understand computer architecture and be able to apply core concepts within embedded

computing
4. Generate software interfaces to sensors and actuators
5. Understand the networking aspects related to CPS and apply them within the context of

embedded computing
6. Explain real-time requirements and understand the related core software concepts and algorithms
7. Be able to model systems
8. Understand and apply the basics of control of physical systems in form of software
9. Explain core concepts and methods of software for intelligent autonomous systems

30

10. Understand and use software methods for remote access for monitoring, operation, and
maintenance of physical systems and processes

Indicative Literature



Usability and Relationship to other Modules

• The module serves as a mandatory module for CSSE students.

Examination Type: Module Examination

Module Component 1: Lecture
Assessment Type: Written examination Duration/length: 120 min
 Weight: 50%

Scope: All intended learning outcomes of the module (with focus on theory).

Module Component 2: Tutorial
Assessment Type: Assignments
 Weight: 50%

Scope: All intended learning outcomes of the module (with focus on practical content).

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

31

 Software Design and Prototyping

Module Name
Software Design and Prototyping

Module Code

Level (type)
Year 1

CP
7.5

Module Components

Number Name Type CP

 Software Design and Prototyping Lecture Lecture 5

 Software Design and Prototyping Tutorial Tutorial 2.5

Module
Coordinator
NN

Program Affiliation

• BSc Computer Science and Software Engineering

Mandatory Status

Mandatory for CSSE

Entry
Requirements

Pre-requisites

☒
Programming in
C/C++

Co-requisites

☒ Distributed
Development II

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (online) (35

hours)
• Tutorials (17.5 hours)
• Private study (115

hours)
• Exam preparation (20

hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students are expected to be familiar with programming in C/C++ and the basics of collaborative, remote software
development.

Content and Educational Aims

During the early phases of software projects, it is often unclear what the exact requirements are and how a suitable
software design could look like. Since wrong decisions taken during the early phases of a software project
frequently have significant impact on the completion time and the overall costs of a software project, it is often
desirable to quickly construct prototype systems. Prototype systems can not only be used to collect early feedback
in order to clarify requirements. They can also be used to acquire additional customers. This module introduces
software design pattern with a specific focus on the construction of early prototypes, sometimes also called
mockup systems.

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. select software architectures supporting fast prototyping
2. implement interaction prototypes using suitable mockup tools
3. implement backend and server prototypes using suitable mockup tools
4. derive designs of interaction prototypes from incomplete user input
5. conduct an evaluation of mockup prototypes with target users
6. be able to revise prototypes efficiently in an agile manner
7. effectively work in a team prototyping different software components
8. create mock objects that can be used effectively for unit tests

Indicative Literature



32

Usability and Relationship to other Modules

• The module serves as a mandatory module for CSSE students. It builds on Programming in C/C++ and
Distributed Development I.

Examination Type: Module Examination

Assessment: Written examination Duration: 60 min
 Weight: 50%
Scope: Intended Learning outcomes 1,4 and 6.

Assessment: Project Weight: 50%
Scope: Intended Learning outcomes 2,3,5,7 and 8.

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

33

 Calculus and Elements of Linear Algebra II

Module Name Module Code Level (type) CP
Calculus and Elements of Linear Algebra II JTMS-MAT-

10
Year 1
(Methods)

5

Module Components

Number Name Type CP

JTMS-10 Calculus and Elements of Linear Algebra II Lecture 5

Module Coordinator

Dr. Keivan Mallahi Karai,
Prof. Dr. Tobias Preußer

Program Affiliation

• Jacobs Track – Methods and Skills

Mandatory Status

Mandatory for CS, CSSE,
ECE, MATH, Physics and
RIS

Entry Requirements

Pre-requisites

☒ Calculus and
Elements of Linear
Algebra I

Co-
requisites
☒ None

Knowledge, Abilities,
or Skills
• None beyond

formal pre-
requisites

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (online) (35

hours)
• Private study (90

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review the content of Calculus and Elements of Linear Algebra I

Content and Educational Aims

This module is the second in a sequence introducing mathematical methods at the university level in a form
relevant for study and research in the quantitative natural sciences, engineering, Computer Science, and
Mathematics. The emphasis in these modules is on training operational skills and recognizing mathematical
structures in a problem context. Mathematical rigor is used where appropriate. However, a full axiomatic treatment
of the subject is provided in the first-year modules “Analysis I” and “Linear Algebra”.

The lecture comprises the following topics

• Directional derivatives, partial derivatives
• Linear maps
• The total derivative as a linear map
• Gradient and curl (elementary treatment only, for more advanced topics, in particular the connection to

the Gauss and Stokes’ integral theorems, see module “Applied Mathematics”
• Optimization in several variables, Lagrange multipliers
• Elementary ordinary differential equations
• Eigenvalues and eigenvectors
• Hermitian and skew-Hermitian matrices
• First important example of eigendecompositions: Linear constant-coefficient ordinary differential

equations
• Second important example of eigendecompositions: Fourier series
• Fourier integral transform
• Matrix factorizations: Singular value decomposition with applications, LU decomposition, QR

decomposition

Intended Learning Outcomes
By the end of the module, students will be able to

• apply the methods described in the content section of this module description to the extent that they
can solve standard text-book problems reliably and with confidence;

34

• recognize the mathematical structures in an unfamiliar context and translate them into a mathematical
problem statement;

• recognize common mathematical terminology used in textbooks and research papers in the
quantitative sciences, engineering, and mathematics to the extent that they fall into the content
categories covered in this module.

Indicative Literature

S.I. Grossman (2014). Calculus of one variable, 2nd edition. Cambridge: Academic Press.
S.A. Leduc (2003). Linear Algebra. Hoboken: Wiley.
K. Riley, M. Hobson, S. Bence (2006). Mathematical Methods for Physics and Engineering, third edition.
Cambridge: Cambridge University Press.
Usability and Relationship to other Modules

• The module is a mandatory / mandatory elective module of the Methods and Skills area that is part of
the Jacobs Track (Methods and Skills modules; Community Impact Project module; Language
modules; Big Questions modules).

• A more advanced treatment of multi-variable Calculus, in particular, its applications in Physics and
Mathematics, is provided in the second-semester module “Applied Mathematics”. All students taking
“Applied Mathematics” are expected to take this module as well as the module topics are closely
synchronized.

• The second-semester module “Linear Algebra” provides a complete proof-driven development of the
theory of Linear Algebra. Diagonalization is covered more abstractly, with particular emphasis on
degenerate cases. The Jordan normal form is also covered in “Linear Algebra”, not in this module.

• Mandatory for CS, ECE, MATH, Physics and RIS.
• Elective for all other study programs.

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of this module

35

 Distributed Development

Module Name
Distributed Development

Module Code

Level (type)
Year 1

CP
5

Module Components

Number Name Type CP

 Distributed Development I Lecture & Lab 2.5

 Distributed Development II Lecture & Lab 2.5

Module
Coordinator
N.N.

Program Affiliation

• BSc Computer Science and Software Engineering

Mandatory Status

Mandatory for CSSE

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒
Programming
in C/C++

Knowledge, Abilities, or
Skills

Frequency

Annually
Fall (I)
Spring (II)

Forms of Learning and
Teaching

• Lectures (online) (17.5

hours)
• Tutorials (17.5 hours)
• Independent studies

(90 hours)

Duration

2 semesters

Workload

125 hours

Recommendations for Preparation

Previous experience with programming is a plus but not required.

Content and Educational Aims

Software development is increasingly done in collaborative teams who work in a remote fashion, i.e., with team
members who are spatially distributed at different locations, sometimes even across different time-zones. This
can be very convenient for employers, who can recruit from around the globe without the need for expecting the
employees to relocate, as well as for the employees, who gain some freedom in where and when they execute their
tasks. But it includes also quite some challenges, e.g., for the development of a joined approach, the coordination
of tasks, or the meeting of deadlines. This module provides a hands-on introduction into the methods and tools
for handling these opportunities and challenges.

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. Understand the opportunities and challenges that are involved in collaborative, remote software
development

2. Comprehend the needs for and limitations of synchronous online-meeting tools
3. Use the different standard features of tools for synchronous online-meetings
4. Comprehend the concepts of versioning software and be able to apply them
5. Understand the pro’s and con’s of asynchronous online communication
6. Use standard features of online communication teams for brain-storming and the development of

a joined approach to solve problems and the distribution of tasks
7. Understand the needs for calendars and to-do lists and how to handle them
8. Comprehend bug-trackers and be able to use them
9. Understand the possibilities and limitations, e.g., legal restrictions, of monitoring tools that, e.g.,

keep track of the time spend on tasks per individual team member

36

Indicative Literature



Usability and Relationship to other Modules

• The module serves as a mandatory module for CSSE students.

Examination Type: Module Examination

Assessment: Practical assessment (tool-use assignments)
 Weight: 100%
Scope: All intended learning outcomes of the module.

37

6.2 YEAR 2

 Databases and Web Services

Module Name Module Code Level (type) CP
Databases and Web Services CO-560 Year 2 (CORE) 7.5

Module Components

Number Name Type CP

CO-560-A Databases and Web Services Lecture 5

CO-560-B Databases and Web Services - Project Project 2.5

Module
Coordinator

Prof. Dr. Peter
Baumann

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and CSSE
Mandatory elective for RIS

Entry
Requirements

Pre-requisites

☒ Algorithms
and Data
Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance
(online) (35
hours)

• Project (97.5
hours)

• Independent
Studies (35
hours)

• Exam preparation
(20 hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Working knowledge of basic data structures, such as trees, is required as well as familiarity with an object-oriented
programming language such as C++. Basic knowledge of algebra is useful. For the project work, students benefit
from having basic hands-on skills using Linux and, ideally, basic knowledge of a scripting language such as Python
(the official Python documentation is available on https://docs.python.org/).

Content and Educational Aims

This module offers a combined introduction to databases and web services. The database part starts with database
design using the Entity Relationship (ER) and Unified Modeling Language (UML) models, followed by relational
databases and querying them through SQL, relational design theory, indexing, query processing, transaction
management, and NoSQL/Big Data databases. In the web services part, the topics addressed include markup
languages, three-tier application architectures, and web services. Security aspects are addressed from both
perspectives.

A hands-on group project complements the theoretical aspects: on a self-chosen topic, students implement the
core of a web-accessible information system using Python (or a similar language), MySQL, and Linux, guided
through homework assignments.

https://www.sciencedirect.com/science/article/pii/S0313592618300638

38

Intended Learning Outcomes

By the end of this module, students will be able to

1. read and write ER and UML diagrams;
2. design and normalize data models for relational databases;
3. write SQL queries and understand their evaluation by a database server;
4. explain the concept of transactions and how to use transactions in application design;
5. use web application frameworks to create dynamic websites;
6. describe the differences of selected NoSQL data models and make a requirement-driven choice;
7. restate three-tier architectures and their components;
8. discuss the principles and basic mechanisms of reactive website design;
9. summarize the security and privacy issues in the context of databases and web services.

Indicative Literature

Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer D. Widom: Database Systems: The Complete Book. 2nd edition,
Pearson, 2008.

Ragu Ramakrishnan: Database Management Systems. 3rd edition, McGraw Hill, 2003.

James Lee: Open Source Web Development with LAMP. Pearson, 2003.

Usability and Relationship to other Modules

• Mandatory for a major in CS and CSSE
• Mandatory for a minor in CS
• Serves as a mandatory elective specialization module for RIS major students.
• Pre-requisite for the CORE module Secure and Dependable Systems
• This module introduces components that are widely used by modern applications and information

systems. Students can apply their knowledge in the software engineering module. This module serves as
a default advanced level minor module.

Examination Type: Module Component Examinations

Module Component 1: Lecture

Assessment Type: Written examination Duration: 120 min
 Weight: 67%
Scope: All intended learning outcomes of the excluding the practical aspects

Module Component 2: Project

Assessment Type: Project
 Weight: 33%
Scope: All practical aspects of the intended learning outcomes

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

39

 Operating Systems

Module Name Module Code Level (type) CP
Operating Systems CO-562 Year 2 (CORE) 7.5

Module Components

Number Name Type CP

CO-562-A Operating Systems Lecture 7.5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and CSSE

Entry
Requirements

Pre-requisites

☒ Introduction
to Computer
Science
☒ Algorithms
and Data
Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance
(online) (52.5
hours)

• Independent
study (115 hours)

• Exam preparation
(20 hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students are expected to have a working Linux installation, which allows them to compile and run sample
programs provided by the instructor and to implement their own solutions for homework assignments.

Content and Educational Aims

This module introduces concepts and principles used by operating systems to provide programming abstractions
that enable an efficient and robust execution of application programs. Students will gain an understanding of how
an operating system kernel manages hardware components and how it provides abstractions such as processes,
threads, virtual memory, file systems, and inter-process communication facilities. Students learn the principles
of event-driven and concurrent programming and the mechanisms that are necessary to solve synchronization and
coordination problems, thereby avoiding race conditions, deadlocks, and resource starvation. The Linux kernel
and runtime system will be used throughout the course to illustrate how key ideas and concepts have been
implemented and how application programs can use them.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain the differences between processes, threads, application programs, libraries, and operating
system kernels;

2. describe well-known mutual exclusion and coordination problems;
3. use semaphores to achieve mutual exclusion and solve coordination problems;
4. use mutual exclusion locks and condition variables to solve synchronization and coordination

problems;
5. illustrate how deadlocks can be avoided, detected, and resolved;
6. summarize the different mechanisms to realize virtual memory and their trade-offs;
7. solve basic inter-process communication problems using signals and pipes;

40

8. use socket inter-process communication primitives;
9. multiplex I/O activities using suitable system calls and libraries;
10. describe file system programming interfaces and the design of file systems at the operating system

kernel level;
11. explain how memory mapping can improve I/O performance;
12. restate the functionality of a linker and the difference between static linking and dynamic linking;
13. outline how different device types are supported by Unix-like kernels;
14. discuss virtualization mechanisms such as containers or virtual machines.

Indicative Literature

Abraham Silberschatz, Peter B. Galvin, Greg Gagne: Applied Operating System Concepts, John Wiley, 2000.

Andrew S. Tanenbaum, Herbert Bos: Modern Operating Systems, Prentice Hall, 4th edition, Pearson, 2015.

William Stallings: Operating Systems: Internals and Design Principles, 8th edition, Pearson, 2014.

Robert Love: Linux Kernel Development, 3rd edition, Addison Wesley, 2010.

Robert Love: Linux System Programming: Talking Directly to the Kernel and C Library, 2nd edition, O'Reilly,
2013.

Usability and Relationship to other Modules

• Mandatory for a major in CS and CSSE
• Pre-requisite for the CORE module Secure and Dependable Systems
• This module enables students to write programs that make efficient use of the services provided by the

operating system kernel. This is particularly important for advanced modules on computer networks,
robotics, and embedded systems.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module
Module achievement: 50% of the assignments correctly solved

This module includes hands-on assignments so that students can develop their system programming skills. The
module achievement ensures that a sufficient level of practical system programming skills has been obtained.

41

 Data Analytics and Modeling

Module Name

Data Analytics and Modeling

Module Code
CO-710

Level (type)
Year 2

CP
7.5

Module Components

Number Name Type CP

CO-710-A Data Analytics and Modeling Lecture 7.5

Module
Coordinator

N.N.

Program Affiliation

• Minor in Data Science

Mandatory Status

Mandatory for Minor in Data
Science and CSSE

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

•

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Lectures (hybrid /
online) (52.5
hours)

• Private Study
(135 hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Required for solving the coding assignments are Python skills at the level achieved after successful completion
of the module Introduction to Data Science. Furthermore, students are encouraged to review first-year level
statistics and linear algebra.

Content and Educational Aims

The module offers an introduction to the principles of data analytics and predictive data modeling and is
structured into four parts. First, essential concepts from statistics are reviewed in the data modeling context,
illustrating key ideas including randomness, distributions, and confidence regions. Examples and case studies
are discussed to distinguish between proper and improper uses of statistics. Basic linear algebra is reviewed in
the second part of the module, emphasizing vectors, distances, linear equations, matrices, and inversion. Key
ideas such as the least squares approach are motivated with geometrical principles. The third part of the module
is concerned with matrix decompositions such as the Singular Value Decomposition (SVD) and its close relatives
Principal Component Analysis (PCA) and Empirical Orthogonal Function (EOF) analysis. The fourth part clarifies
the distinction between linear and nonlinear modeling, and introduces key nonlinear techniques. Flexible
educational formats (mostly online and hybrid) allow for asynchronous learning. Lectures are combined with
Python exercises. Disciplinary applications and case studies are immersed as bridging elements.

42

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. identify important problem types and solution approaches in data analytics,
2. understand how key concepts from statistics and linear algebra enter data science,
3. explain matrix decompositions and their usage in data science,
4. discuss regularization concepts and optimality criteria in data analytics,
5. know the basics of nonlinear modeling and related computational approaches,
6. convert data structures to Python/NumPy arrays for usage in data modeling,
7. apply Python statistics and linear algebra tools in data analytics and modeling.

Indicative Literature

• Ani Adhikari, John DeNero, David Wagner. Computational and Inferential Thinking: The Foundations of
Data Science. Originally developed for the UC Berkeley course Data 8: Foundations of Data Science.
An online version of the textbook is available at https://inferentialthinking.com/.

• Steven S. Skiena. The Data Science Design Manual. Springer 2017.
• Gilbert Strang: Linear Algebra and Learning from Data. Wellesley-Cambridge 2019. See

https://math.mit.edu/~gs/learningfromdata/.
• Joe Suzuki: Statistical Learning with Math and Python. Springer 2021.
• Jake Vanderplas. Python Data Science Handbook. O'Reilly 2016. An online version is available at

https://jakevdp.github.io/PythonDataScienceHandbook/.

Usability and Relationship to other Modules

•

Examination Type: Module Examination

Type: Written Examination Duration/Length: 180 min
Scope: All intended learning outcomes of the module. Weight: 100 %

Module achievement: 50% of the assignments need to be correctly solved.

http://data8.org/
https://inferentialthinking.com/
https://math.mit.edu/%7Egs/learningfromdata/
https://jakevdp.github.io/PythonDataScienceHandbook/

43

 Probability and Random Processes

Module Name Module Code Level (type) CP
Probability and Random Processes JTMS-MAT-12 Year 2

(Methods)
5

Module Components

Number Name Type CP

JTMS-12 Probability and random processes Lecture 5

Module
Coordinator

Dr. Keivan Mallahi
Karai, Prof. Dr.
Tobias Preußer

Program Affiliation

• Jacobs Track – Methods and Skills

Mandatory Status

Mandatory for CS,
CSSE, ECE, MATH,
Physics and RIS
Mandatory elective for
EES

Entry
Requirements

Pre-requisites

☒ Calculus and
Elements of Linear
Algebra I & II

Co-
requisites

☒ None

Knowledge, Abilities, or Skills

• Knowledge of calculus at

the level of a first year
calculus module
(differentiation,
integration with one and
several variables,
trigonometric functions,
logarithms and exponential
functions).

• Knowledge of linear
algebra at the level of a
first year university module
(eigenvalues and
eigenvectors,
diagonalization of
matrices).

• Some familiarity with
elementary probability
theory at the high school
level.

Frequency

Annually (Fall)

Forms of Learning and
Teaching

• Lectures (online)

(35 hours)
• Private study (90

hours)
Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Review all of the first year calculus and linear algebra modules as indicated in “Entry Requirements – Knowledge,
Ability, or Skills” above.

Content and Educational Aims

This module aims to provide a basic knowledge of probability theory and random processes suitable for students
in engineering, Computer Science, and Mathematics. The module provides students with basic skills needed for
formulating real-world problems dealing with randomness and probability in mathematical language, and methods
for applying a toolkit to solve these problems. Mathematical rigor is used where appropriate. A more advanced
treatment of the subject is deferred to the third-year module Stochastic Processes.

The lecture comprises the following topics

44

• Brief review of number systems, elementary functions, and their graphs
• Outcomes, events and sample space.
• Combinatorial probability.
• Conditional probability and Bayes’ formula.
• Binomials and Poisson-Approximation
• Random Variables, distribution and density functions.
• Independence of random variables.
• Conditional Distributions and Densities.
• Transformation of random variables.
• Joint distribution of random variables and their transformations.
• Expected Values and Moments, Covariance.
• High dimensional probability: Chebyshev and Chernoff bounds.
• Moment-Generating Functions and Characteristic Functions,
• The Central limit theorem.
• Random Vectors and Moments, Covariance matrix, Decorrelation.
• Multivariate normal distribution.
• Markov chains, stationary distributions.

Intended Learning Outcomes
By the end of the module, students will be able to

1. command the methods described in the content section of this module description to the extent that
they can solve standard text-book problems reliably and with confidence;

2. recognize the probabilistic structures in an unfamiliar context and translate them into a mathematical
problem statement;

3. recognize common mathematical terminology used in textbooks and research papers in the quantitative
sciences, engineering, and mathematics to the extent that they fall into the content categories covered
in this module.

Indicative Literature

J. Hwang and J.K. Blitzstein (2019). Introduction to Probability, second edition. London: Chapman & Hall.

S. Ghahramani. Fundamentals of Probability with Stochastic Processes, fourth edition. Upper Saddle River:
Prentice Hall.
Usability and Relationship to other Modules

• The module is a mandatory / mandatory elective module of the Methods and Skills area that is part of
the Jacobs Track (Methods and Skills modules; Community Impact Project module; Language modules;
Big Questions modules).

• Students taking this module are expected to be familiar with basic tools from calculus and linear algebra.
• Mandatory for a major in CS, CSSE, ECE, MATH, Physics and RIS.
• Mandatory elective for a major in EES (if pre-requisites are met).
• Elective for all other study programs.

Examination Type: Module Examination

Assessment type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of this module

45

 Software Engineering

Module Name Module Code Level (type) CP

Software Engineering CO-561 Year 2 (CORE) 7.5

Module Component

Number Name Type CP

CO-561-A Software Engineering Lecture 2.5

CO-561-B Software Engineering Project Project 5

Module
Coordinator

Prof. Dr. Peter
Baumann

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory for CS and CSSE

Mandatory elective for RIS

Entry
Requirements

Pre-requisites

☒ Databases
and Web
Services

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually

(Spring)

Forms of Learning and
Teaching

• Class attendance
(online) (35 hours)

• Independent study (10
hours)

• Development work
(132.5 hours)

• Exam preparation (10
hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Students are expected to be able to develop software using an object-oriented programming language such as
C++, and they should have access to a Linux system and associated software development tools.

Content and Educational Aims

This module is an introduction to software engineering and object-oriented software design. The lecture focuses
on software quality and the methods to achieve and maintain it in environments of "multi-person construction of
multi-version software." Based on their pre-existing knowledge of an object-oriented programming language,
students are familiarized with software architectures, design patterns and frameworks, software components and
middleware, Unified Modeling Language (UML)-based modelling, and validation by testing. Furthermore, the
course addresses the more organizational topics of project management and version control.

46

The lectures are accompanied by a software project in which students have to develop a software solution to a
given problem. The problem is described from the viewpoint of a customer and students working in teams have
to execute a whole software project lifecycle. The teams have to create a suitable software architecture and
software design, implement the components, and integrate the components. The teams have to ensure that basic
quality requirements for the solution and the components are defined and satisfied. The students produce various
artifacts such as design documents, source code, test cases and user documentation. All artifacts need to be
maintained in a version control system and the commits should allow the instructor and other team members to
track in a meaningful way the changes and who has been contributing them.

Intended Learning Outcomes

By the end of this module, students will be able to

1. understand and apply object-oriented design patterns;
2. read and write UML diagrams;
3. contrast the benefits and drawbacks of different software development models;
4. design and plan a larger software project involving a team development effort;
5. translate requirements formulated by a customer into computer science terminology;
6. evaluate the applicability of different software engineering models for a given software

development project;
7. assess the quality of a software design and its implementation;
8. apply tools that assist in the various stages of a software development process;
9. work effectively in a team toward the goals of the team.

Indicative Literature

Ian Sommerville: Software Engineering, Pearson, 2010.

Roger Pressman: Software Engineering – a Practitioner's Approach, McGraw-Hill, 2014.

Usability and Relationship to other Modules

• Mandatory for a major in CS and CSSE

• Mandatory for a minor in CS

• Serves as mandatory elective 3rd year Specialization module for RIS major students.

• Pre-requisite for the CORE module Image Processing

Examination Type: Module Component Examinations

Module Component 1: Lecture

Assessment Type: Written examination Duration: 60 min
 Weight: 33%

Scope: The first three intended learning outcomes of the module (the lecture module component)

Module Component 2: Project

Assessment Type: Project
 Weight: 66%

Scope: The remaining intended learning outcomes of the module (the project module component)

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

47

 Artificial Intelligence (CSSE)

Module Name Module Code Level (type) CP
Artificial Intelligence (CSSE) xxx Year 2 (CORE) 7.5

Module Components

Number Name Type CP
CO-547-A Artificial Intelligence Lecture 5

xxx Artificial Intelligence Tutorial (CSSE) Tutorial 2.5

Module
Coordinator

Prof. Dr.
Andreas Birk

Program Affiliation

• Lecture: Robotics and Intelligent Systems (RIS)
• Tutorial: Computer Science and Software Engineering

(CSSE)

Mandatory Status

Lecture: Mandatory for RIS
& CSSE, Mandatory elective
for CS
Tutorial: Mandatory for
CSSE

Entry
Requirements

Pre-requisites

☒ Programming
in C/C++
☒ Introduction
to RIS
OR
☒ Introduction
to CPS

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Lectures (online)
(35 hours)

• Private study
(115 hours)

• Tutorials (17.5
hours)

• Exam preparation
(20 hours)

Duration

1 semester

Workload

187.5 hours

Recommendations for Preparation

Revise content of the pre-requisite modules.

Content and Educational Aims

Artificial Intelligence (AI) is an important subdiscipline of Computer Science that deals with technologies to
automate the performance of tasks that are usually associated with intelligence. AI methods have a significant
application potential, as there is an increasing interest and need to generate artificial systems that can carry out
complex missions in unstructured environments without permanent human supervision. The module teaches a
selection of the most important methods in AI. In addition to general-purpose techniques and algorithms, it also
includes aspects of methods that are especially targeted for physical systems such as intelligent mobile robots or
autonomous cars. The AI lecture is complemented in this module by an online tutorial where the application-
oriented side of software development in the context of AI is considered.

Intended Learning Outcomes

By the end of this module, students should be able to

• outline and explain the history, general developments, and application areas of AI;
• apply the basic concepts and methods of behavior-oriented AI;
• use concepts and methods of search algorithms for problem-solving;
• explain the basic concepts of path-planning as an application example for domain-specific search;
• apply basic path-planning algorithms and to compare their relations to general search algorithms;
• write and explain concepts of propositional and first-order logic;
• use logic representations and inference for basic examples of artificial planning systems;

48

• apply AI concepts and methods to develop software.

Indicative Literature

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.

S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

J.-C. Latombe, Robot Motion Planning, Springer, 1991.

Usability and Relationship to other Modules

• This module gives an introduction to Artificial Intelligence (AI) excluding the aspects of machine learning
(ML), which are covered in a dedicated module that complements this one.

• Mandatory for a major in CSSE

Module Component Examinations

Module Component 1: Lecture
Assessment Type: Written examination Duration/length: 60 min
 Weight: 50%
Scope: Intended Learning Outcomes 1-7.

Module Component 2: Tutorial
Assessment Type: Assignments
 Weight: 50%
Scope: Intended Learning Outcomes 1-8.

Completion: To pass this module, the examination of each module component has to be passed with at least 45%

49

 Machine Learning

Module Name Module Code Level (type) CP

Machine Learning CO-541 Year 2 (CORE) 5

Module Components

Number Name Type CP

CO-541-A Machine Learning Lecture 5

Module
Coordinator

Prof. Dr. Peter
Zaspel

Program Affiliation

• Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory for RIS and
CSSE

Mandatory elective for CS

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒None

Knowledge, Abilities, or
Skills
• Knowledge and

command of
probability theory
and methods, as
in the module
“Probability and
Random Process
(JTMS-12)

Frequency

Annually

(Spring)

Forms of Learning and
Teaching

• Class attendance (35
hours)

• Private study (70
hours)

• Exam preparation (20
hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

Machine learning (ML) concerns algorithms that are fed with (large quantities of) real-world data, and which
return a compressed “model” of the data. An example is the “world model” of a robot; the input data are sensor
data streams, from which the robot learns a model of its environment, which is needed, for instance, for navigation.
Another example is a spoken language model; the input data are speech recordings, from which ML methods
build a model of spoken English; this is useful, for instance, in automated speech recognition systems. There
exist many formalisms in which such models can be cast, and an equally large diversity of learning algorithms.
However, there is a relatively small number of fundamental challenges that are common to all of these formalisms
and algorithms. The lectures introduce such fundamental concepts and illustrate them with a choice of elementary
model formalisms (linear classifiers and regressors, radial basis function networks, clustering, online adaptive
filters, neural networks, or hidden Markov models). Furthermore, the lectures also (re-)introduce required
mathematical material from probability theory and linear algebra.

50

Intended Learning Outcomes

By the end of this module, students should be able to

1. understand the notion of probability spaces and random variables;
2. understand basic linear modeling and estimation techniques;
3. understand the fundamental nature of the “curse of dimensionality;”
4. understand the fundamental nature of the bias-variance problem and standard coping strategies;
5. use elementary classification learning methods (linear discrimination, radial basis function networks,

multilayer perceptrons);
6. implement an end-to-end learning suite, including feature extraction and objective function optimization

with regularization based on cross-validation.

Indicative Literature

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, 2nd edition, Springer, 2008.

S. Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning, Cambridge University Press, 2014.

C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

T.M. Mitchell, Machine Learning, Mc Graw Hill India, 2017.

Usability and Relationship to other Modules

• Mandatory for a major in RIS

• Mandatory for a minor in RIS

• This module serves as a third Year Specialization module for CS major students.

• This module gives a thorough introduction to the basics of machine learning. It complements the Artificial
Intelligence module.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

51

 Machine Learning Tools

Module Name
Machine Learning Tools

Module Code
xxx

Level (type)
Year 2

CP
2.5

Module Components

Number Name Type CP

xxx Machine Learning Tools Lab 2.5

Module
Coordinator
Prof. Dr. Peter
Zaspel

Program Affiliation

• BSc Computer Science and Software
Engineering (CSSE)

Mandatory Status

Mandatory for CSSE

Entry
Requirements

Pre-requisites

☒ none

Co-requisites

☒ Machine
Learning

Knowledge, Abilities, or
Skills

•

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Self study of
online material
(17.50 hours)

• Lab meetings
(online) (8.75
hours)

• Lab assignments
(36.25 hours)

Duration

1 semester

Workload

62.5 hours

Recommendations for Preparation
None

Content and Educational Aims

Modern machine learning in industry and research requires the knowledge of a comprehensive stack of tools and
systems that allow to store and administrate data (e.g. Amazon S3, Kaggle, Dataverse, GIT LFS), extract features
for various applications (e.g. Word2Vec, TSFEL), build up machine learning pipelines of training, testing, and
hyperparameter optimization (e.g. skit-learn, Keras, TensorFlow, PyToarch) and ultimately deploy finalized models
(e.g. TensorFlow Serving, MLFlow). This module gives exposure to a regularly updated latest state of the art set
of tools that are relevant for the practical use of Machine Learning. It thereby complements the more theoretical
and methods-driven module “Machine Learning” with market-oriented skills.

Intended Learning Outcomes

By the end of this module, students will be able to
1. describe and use systems and tools to store and administrate data;
2. Explain and apply modern feature extraction libraries to real-world data;
3. understand and use standard tool chains for training, testing and hyperparameter optimization in

Machine Learning;
4. deploy machine learning models.

Indicative Literature

Usability and Relationship to other Modules

• Mandatory module for CSSE students.

52

Examination Type: Module Examination

Assessment Type: Lab Assignments Weight: 100%

Scope: All intended learning outcomes of the module

53

6.3 YEAR 3

 Computer Graphics

Module Name Module Code Level (type) CP
Computer Graphics CA-S-CS-801 Year 3

(Specialization)
5

Module Components

Number Name Type CP
CA-CS-801 Computer Graphics Lecture 5

Module
Coordinator

N.N.

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS,
CSSE and RIS

Entry
Requirements

Pre-requisites

☒
Algorithms and
Data Structures

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance
(online) (35
hours)

• Private study (70
hours)

• Exam preparation
(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

This module deals with the digital synthesis and manipulation of visual content. The creation process of computer
graphics spans from the creation of a three-dimensional (3D) scene to displaying or storing it digitally. Prominent
tasks in computer graphics are geometry processing, rendering, and animation. Geometry processing is concerned
with object representations such as surfaces and their modeling. Rendering is concerned with transforming a
model of the virtual world into a set of pixels by applying models of light propagation and sampling algorithms.
Animation is concerned with descriptions of objects that move or deform over time. This is an introductory module
covering the concepts and techniques of 3D (interactive) computer graphics. It covers mathematical foundations,
basic algorithms and principles, and some advanced methods and concepts. An introduction to the
implementation of simple programs using a mainstream computer graphics library completes this module.

Intended Learning Outcomes

By the end of this module, students will be able to

1. construct 3D geometry representations;
2. apply 3D transformations;
3. understand the algorithms and optimizations applied by graphics rendering systems;
4. explain the stages of modern computer graphics programmable pipelines
5. implement simple computer graphics applications using graphics frameworks such as OpenGL;
6. illustrate the techniques used to create animations.

Indicative Literature

54

John Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, Kurt Akeley,
Computer Graphics - Principles and Practice, 3rd edition, Addison-Wesley, 2013.

Peter Shirley, Steve Marschner, Fundamentals of Computer Graphics, 4th edition, Taylor and Francis Ltd, 2016.

Matt Pharr, Wenzel Jakob, Greg Humphreys, Physically Based Rendering: From Theory to Implementation, 3rd
edition, Morgan Kaufmann, 2016.

Usability and Relationship to other Modules

• Mandatory elective for a major in CS and CSSE.
• Serves as a 3rd year specialization module for RIS major students.
• Students with a strong interest in graphical user interfaces are encouraged to also select the Human–

Computer Interaction specialization module, which discusses among other things how computer graphics
can be used as a component of interactive graphical user interfaces.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%

Scope: All intended learning outcomes of the module

55

 Computer Networks

Module Name Module Code Level (type) CP
Computer Networks CO-564 Year 2 (CORE) 5

Module Components

Number Name Type CP

CO-564-A Computer Networks Lecture 5

Module
Coordinator

Prof. Dr. Jürgen
Schönwälder

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory Elective for CS
and CSSE

Entry
Requirements

Pre-requisites

☒
Algorithms and
Data Structures

Co-requisites

☒
Operating
Systems

Knowledge, Abilities, or
Skills

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance
(online) (35
hours)

• Private study (70
hours)

• Exam preparation
(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Students are expected to be familiar with the C programming language and to learn basics of higher-level scripting
languages such as Python (the official Python documentation is available on https://docs.python.org/).

Content and Educational Aims

Computer networks such as the Internet play a critical role in today's connected world. This module discusses the
technology of Internet services in depth to enable students to understand the core issues involved in the design
of modern computer networks. Fundamental algorithms and principles are explained in the context of existing
protocols as they are used in today's Internet. Students taking this course should finally understand the technical
complexity behind everyday online services such as Google or YouTube.

Students taking this module will understand how computer networks work and they will be able to assess
communication networks, including aspects such as performance but also robustness and security. Students will
learn that the design of communication networks is not only influenced by technical constraints but also by the
necessity to define common standards, which often requires to take engineering decisions that reflect non-
technical requirements.

Intended Learning Outcomes

By the end of this module, students will be able to

1. recall layering principles and the OSI reference model;
2. articulate the organization of the Internet and the organization involved in providing Internet services;
3. describe media access control, flow control, and congestion control mechanisms;
4. explain how local area networks differ from global networks;
5. illustrate how frames are forwarded in local area networks;
6. contrast addressing mechanisms and translations between addresses used at different layers;

https://www.youtube.com/watch

56

7. demonstrate how the Internet network layer forwards packets;
8. present how routing algorithms and protocols are used to determine and select routes;
9. describe how the Internet transport layer provides different end-to-end services;
10. demonstrate how names are resolved to addresses and vice versa;
11. summarize how application layer protocols send and access electronic mail or access resources on the

world-wide web;
12. design and implement simple application layer protocols;
13. recognize to which extent computer networks are fragile and evaluate strategies to cope with the

fragility;
14. analyze traffic traces produced by a given computer network.

Indicative Literature

James F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach Featuring the Internet, 3rd Edition,
Addison-Wesley, 2004.

Andrew S. Tanenbaum: Computer Networks, 4th Edition, Prentice Hall, 2002.

Usability and Relationship to other Modules

• Mandatory elective module for a major in CS
• Pre-requisite for the CORE module Secure and Dependable Systems
• The module should be taken together with the module Operating Systems, because a significant portion

of the communication technology is implemented at the operating system level. An understanding of
operating system concepts and abstractions will help students to understand how computer network
technology is commonly implemented and made available to applications. The specialization module
Distributed Algorithms discusses algorithms for solving problems commonly found in distributed systems
that use computer networks to exchange information. The module Secure and Dependable Systems
introduces cryptographic mechanisms that can be used to secure communication over computer
networks.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

57

 Web Application Development

Module Name Module Code Level (type) CP
Web Application Development CA-S-CS-804 Year 3

(Specialization)
5

Module Components

Number Name Type CP
CA-CS-804-A Web Application Development Lecture 2.5

CA-CS-804-B Web Application Development - Project Project 2.5

Module
Coordinator

N.N.

Program Affiliation

• Computer Science (CS)

Mandatory Status

Mandatory elective for CS,
CSSE and RIS

Entry
Requirements

Pre-requisites

☒
Databases and
Web Services

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

Frequency

Annually
(Spring)

Forms of Learning and
Teaching

• Class attendance
(online) (17.5
hours)

• Private study (40
hours)

• Project work (50
hours)

• Exam preparation
(17.5 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

A web application is a client-server computer program where the client provides the user interface and the client
side logic runs in a web browser or as an app running on a mobile device such as a smart phone or a tablet. A key
characteristic is that more complex application logic and data storage is realized by a server offering a web
application programming interface.

This module focuses on the client side of web application and introduces technologies that can be used to
implement interactive user interfaces and client side logic. It builds on the module databases and web services,
which covers the data storage components and server side logic of web applications.

This module consists of a lecture and an associated project. The lecture component introduces programming
languages and frameworks that are widely used for implementing the client side of web applications such as Java,
Kotlin, Swift, JavaScript and frameworks built on top of them. In the project component, students develop web
applications and test them on existing and openly accessible web services.

Intended Learning Outcomes

By the end of this module, students will be able to

1. explain the document object model behind HTML and its relation to CSS;
2. discuss the principles and basic mechanisms of reactive website design;

58

3. analyze the interactions between web applications and web services.
4. use languages such as Java, Kotlin, or Swift to implement mobile web applications;
5. use web standards such as HTML, CSS, and JavaScript to implement web applications running in

standard web browsers.

Indicative Literature

Stoyan Stefanov: JavaScript Patterns, O'Reilly Media, 2010.

Alexey Soshin: Hands-on Design Patterns with Kotlin, Packt Publishing, 2018.

Alex Banks, Eve Porcello: Learning React: Functional Web Development.with React and Flux, O'Reilly, 2017.

Usability and Relationship to other Modules

• Mandatory elective for a major in CS and CSSE.
• Mandatory elective for a major in RIS.

Examination Type: Module Component Examinations

Module Component 1: Lecture

Assessment Type: Written examination Duration: 120 min
 Weight: 50%
Scope: First group of intended learning outcomes of the module

Module Component 2: Project

Assessment Type: Project Weight: 50%

Scope: Second group of intended learning outcomes of the module

Completion: To pass this module, the examination of each module component has to be passed with at least
45%.

59

 Human-Computer Interaction

Module Name Module Code Level (type) CP
Human Computer Interaction CA-S-RIS-802 Year 3

(Specialization)
5

Module Components

Number Name Type CP
CA-RIS-802 Human Computer Interaction Lecture 5

Module
Coordinator

N.N.

Program Affiliation

• Robotics and Intelligent Systems (RIS)

Mandatory Status

Mandatory elective for RIS,
CS and CSSE

Entry
Requirements

Pre-requisites

☒ None

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• None

Frequency

Annually
(Fall)

Forms of Learning and
Teaching

• Class attendance
(online) (35
hours)

• Private study (70
hours)

• Exam preparation
(20 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

None

Content and Educational Aims

Computer systems often interact with human beings. The design of a good human–computer interface is often
crucial for the acceptance and the success of a software system. Human–computer interface designs have to
satisfy several requirements such as usability, learnability, efficiency, accessibility, and safety. The module
discusses the evolution of human–computer interaction models and introduces design principles for graphical
user interfaces and other types of interaction (e.g., visual, voice, gesture). Human–computer interaction designs
are often evaluated using prototypes or mockups that can be given to test candidates to evaluate the effectiveness
of the design. The module introduces evaluation strategies as well as tools and techniques that can be used to
prototype human–computer interfaces.

Intended Learning Outcomes

By the end of this module, students should be able to

• explain the evolution of human–computer interaction models;
• design and implement simple graphical user interfaces;
• explain ergonomic principles guiding the design of user interfaces;
• illustrate different types of interaction (e.g., visual, voice, gestures) and their usability aspects;
• evaluate aspects of and tradeoffs between usability, learnability, efficiency, and safety;
• apply scientific methods to evaluate interfaces with respect to their usability and other desirable

properties;
• use prototyping tools that can be employed to create mockups of user interfaces during the early

stages of a software project.

Indicative Literature

Not specified

Usability and Relationship to other Modules

60

• Students with a strong interest in graphical user interfaces are encouraged to also select the Computer
Graphics specialization module, which introduces methods and technologies for creating computer
graphics and animations.

• Mandatory elective third year Specialization module for CS, CSSE and RIS major students.

Examination Type: Module Examination

Assessment Type: Written examination Duration: 120 min
 Weight: 100%
Scope: All intended learning outcomes of the module

61

6.4 Internship / Startup and Career Skills

Module Name Module Code Level (type) CP
Internship / Startup and Career Skills CA-INT-900 Year 3

(CAREER)
15

Module Components

Number Name Type CP
CA-INT-900-0 Internship Internship 15

Module
Coordinator

Sinah Vogel &
Dr. Tanja Woebs
(CSC
Organization);
SPC / Faculty
Startup
Coordinator
(Academic
responsibility)

Program Affiliation

• CAREER module for undergraduate study programs

Mandatory Status

Mandatory for all undergraduate
study programs except IEM

Entry
Requirements

Pre-requisites

☒ at least 15 CP
from CORE
modules in the
major

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• Information provided

on CSC pages (see
below)

• Major specific
knowledge and skills

Frequency

Annually
(Spring/Fall)

Forms of Learning and Teaching

• Internship/Start-up
• Internship event
• Seminars, info-sessions,

workshops and career
events

• Self-study, readings,
online tutorials

Duration
 1 semester

Workload

375 Hours consisting of:
• Internship (308 hours)
• Workshops (33 hours)
• Internship Event (2 hours)
• Self-study (32 hours)

Recommendations for Preparation

• Please see the section “Knowledge Center” at JobTeaser Career Center for information on Career Skills seminar

and workshop offers and for online tutorials on the job market preparation and the application process. For more
information, please see https://www.jacobs-university.de/employability/career-services

• Participating in the internship events of earlier classes

Content and Educational Aims

The aims of the internship module are reflection, application, orientation, and development: for students to reflect
on their interests, knowledge, skills, their role in society, the relevance of their major subject to society, to apply these
skills and this knowledge in real life whilst getting practical experience, to find a professional orientation, and to
develop their personality and in their career. This module supports the programs’ aims of preparing students for
gainful, qualified employment and the development of their personality.

The full-time internship must be related to the students’ major area of study and extends lasts a minimum of two
consecutive months, normally scheduled just before the 5th semester, with the internship event and submission of
the internship report in the 5th semester. Upon approval by the SPC and CSC, the internship may take place at other

https://www.jacobs-university.de/employability/career-services

62

times, such as before teaching starts in the 3rd semester or after teaching finishes in the 6th semester. The Study
Program Coordinator or their faculty delegate approves the intended internship a priori by reviewing the tasks in either
the Internship Contract or Internship Confirmation from the respective internship institution or company. Further
regulations as set out in the Policies for Bachelor Studies apply.

Students will be gradually prepared for the internship in semesters 1 to 4 through a series of mandatory information
sessions, seminars, and career events.
The purpose of the Career Services Information Sessions is to provide all students with basic facts about the job
market in general, and especially in Germany and the EU, and services provided by the Career Services Center.
In the Career Skills Seminars, students will learn how to engage in the internship/job search, how to create a
competitive application (CV, Cover Letter, etc.), and how to successfully conduct themselves at job interviews and/or
assessment centers. In addition to these mandatory sections, students can customize their skill set regarding
application challenges and their intended career path in elective seminars.
Finally, during the Career Events organized by the Career Services Center (e.g. the annual Jacobs Career Fair and
single employer events on and off campus), students will have the opportunity to apply their acquired job market
skills in an actual internship/job search situation and to gain their desired internship in a high-quality environment
and with excellent employers.

As an alternative to the full-time internship, students can apply for the StartUp Option. Following the same schedule
as the full-time internship, the StartUp Option allows students who are particularly interested in founding their own
company to focus on the development of their business plan over a period of two consecutive months. Participation
in the StartUp Option depends on a successful presentation of the student’s initial StartUp idea. This presentation
will be held at the beginning of the 4th semester. A jury of faculty members will judge the student’s potential to realize
their idea and approve the participation of the students. The StartUp Option is supervised by the Faculty StartUp
Coordinator. At the end of StartUp Option, students submit their business plan. Further regulations as outlined in the
Policies for Bachelor Studies apply.

The concluding Internship Event will be conducted within each study program (or a cluster of related study programs)
and will formally conclude the module by providing students the opportunity to present on their internships and reflect
on the lessons learned within their major area of study. The purpose of this event is not only to self-reflect on the
whole internship process, but also to create a professional network within the academic community, especially by
entering the Alumni Network after graduation. It is recommended that all three classes (years) of the same major are
present at this event to enable networking between older and younger students and to create an educational
environment for younger students to observe the “lessons learned” from the diverse internships of their elder fellow
students.

Intended Learning Outcomes

By the end of this module, students should be able to

1. describe the scope and the functions of the employment market and personal career development;
2. apply professional, personal, and career-related skills for the modern labor market, including self-

organization, initiative and responsibility, communication, intercultural sensitivity, team and leadership
skills, etc.;

3. independently manage their own career orientation processes by identifying personal interests, selecting
appropriate internship locations or start-up opportunities, conducting interviews, succeeding at pitches
or assessment centers, negotiating related employment, managing their funding or support conditions
(such as salary, contract, funding, supplies, work space, etc.);

4. apply specialist skills and knowledge acquired during their studies to solve problems in a professional
environment and reflect on their relevance in employment and society;

5. justify professional decisions based on theoretical knowledge and academic methods;
6. reflect on their professional conduct in the context of the expectations of and consequences for employers

and their society;
7. reflect on and set their own targets for the further development of their knowledge, skills, interests, and

values;
8. establish and expand their contacts with potential employers or business partners, and possibly other

students and alumni, to build their own professional network to create employment opportunities in the
future;

9. discuss observations and reflections in a professional network.

Indicative Literature

Not specified

63

Usability and Relationship to other Modules

• Mandatory for a major in BCCB, CBT, CS, EES, GEM, IBA, IRPH, ISCP, Math, MCCB, Physics, RIS, and SMP.
• This module applies skills and knowledge acquired in previous modules to a professional environment and

provides an opportunity to reflect on their relevance in employment and society. It may lead to thesis topics.

Examination Type: Module Examination
Assessment Type: Internship Report or Business Plan and Reflection Length: approx. 3.500 words
Scope: All intended learning outcomes Weight: 100%

64

6.5 Collaborative Software Project

Module Name
Collaborative Software Project

Module Code

Level (type)
Year 3

CP
5

Module Components

Number Name Type CP

xxx Collaborative Software Project Project 5

Module
Coordinator
NN

Program Affiliation

• BSc Computer Science and Software Engineering

Mandatory Status

Mandatory for CSSE

Entry
Requirements

Pre-requisites

☒ Students
must have
successfully
passed 90 CP.

Co-requisites

☒ none

Knowledge, Abilities, or
Skills

Frequency

Annually
Fall

Forms of Learning and
Teaching

• Meetings with the

instructor and within
the group (online) (45
hours)

• Independent project
work (80 hours)

Duration

1 semester

Workload

125 hours

Recommendations for Preparation

Content and Educational Aims

The project enables the students to deepen their knowledge and skills in one or multiple areas of the 1st and
especially 2nd year. They are exposed to state-of-the-art research with the goal to derive ideas and strategies to
address application-oriented problems and to develop software for them. Students learn how to organize and
execute an application-oriented research and development (R&D) project and how to present the results in the
format of a white-paper. Students are expected to organize themselves in group work under the guidance of the
instructor.

Intended Learning Outcomes

Upon completion of this module, students will be able to:

1. Understand state-of-the-art research papers in a chosen field of specialization
2. Plan a research project to reproduce research results or to extend ideas of recent research results
3. Explain research questions and choose suitable methodologies to address them
4. Use methods and tools for remote collaborative software development
5. Document a research project in the style of a typical white-paper

Indicative Literature

 State-of-the-art literature provided by the instructor

Usability and Relationship to other Modules

• The module serves as a mandatory module for CSSE students.

Examination Type: Module Examination

Assessment: Project report (4,000 words) Weight: 100%

Scope: All intended learning outcomes of the module.

65

6.6 Bachelor Thesis

Module Name Module Code Level (type) ECTS

Bachelor Thesis xxxxxxxxxxxxxxx Year 3
(CAREER)

10

Module Components

Number Name Type ECTS

Xxxxxxxxxxxxxxx Thesis Thesis 10

Module
Coordinator

Study Program
Chair

Program Affiliation

• all Bachelor Programs

Mandatory Status

Mandatory for all Bachelor
Programs

Entry
Requirements

Pre-requisites

☒ Students
must be in their
third year and
have taken at
least 30 CP from
Year 2 modules.

Co-requisites

☒ None

Knowledge, Abilities, or
Skills

• Comprehensive

knowledge of the
subject and deeper
insight into the
chosen topic;

• ability to plan and
undertake work
independently;

• skills to identify and
critically review
literature.

Frequency

annually

Forms of Learning and
Teaching

• Self-study/lab
work (350 hours)

• Seminars (25
hours)

Duration

1 semester

Workload

250 hours

Recommendations for Preparation

• Identify an area or a topic of interest and discuss this with your prospective supervisor in good time.
• Create a research proposal including a research plan to ensure timely submission.
• Ensure you possess all required technical research skills or are able to acquire them on time.
• Review again the University’s Code of Academic Integrity and Guidelines to Ensure Good Academic

Practice.

66

Content and Educational Aims

This module is a mandatory graduation requirement for all undergraduate students to demonstrate their ability to
deal with a problem from their respective major subject independently by means of academic/scientific methods
within a set period. Although supervised, the module requires the student to be able to work independently and
regularly and set their own goals in exchange for the opportunity to explore a topic that excites and interests them
personally and which a faculty member is interested to supervise. Within this module, students apply their
acquired knowledge about the major discipline, skills, and methods to conduct research, ranging from the
identification of suitable (short-term) research projects, preparatory literature searches, the realization of
discipline-specific research, and the documentation, discussion, interpretation and communication of the results.

This module consists of two components, an independent thesis and an accompanying seminar. The thesis
component must be supervised by a Jacobs University faculty member and requires short-term research work, the
results of which must be documented in a comprehensive written thesis including an introduction, a justification
of the methods, results, a discussion of the results, and conclusions. The seminar provides students with the
opportunity to present, discuss and justify their and other students’ approaches, methods and results at various
stages of their research to practice these skills to improve their academic writing, receive and reflect on formative
feedback, thereby growing personally and professionally.

Intended Learning Outcomes

On completion of this module, students will be able to

1. independently plan and organize advanced learning processes;
2. design and implement appropriate research methods taking full account of the range of alternative

techniques and approaches;
3. collect, assess and interpret relevant information;
4. draw scientifically founded conclusions that consider social, scientific and ethical insights;
5. apply their knowledge and understanding to a context of their choice;
6. develop, formulate and advance solutions to problems and arguments in their subject area, and defend

these through argument;
7. discuss information, ideas, problems and solutions with specialists and non-specialists;

Usability and Relationship to other Modules

• This module builds on all previous modules of the program. Students apply the knowledge, skills and
competencies they acquired and practiced during their studies, including research methods and the ability
to acquire additional skills independently as and if required.

Assessment

Type: Thesis

Scope: All intended learning outcomes, mainly 1-6.

Weight: 80%

Length: approx. 6.000 – 8.000 words (15 – 25
pages), excluding front- and back matter.

Assessment

Type: Presentation Duration: approx. 15 to 30 minutes

Scope: The presentation focusses mainly on ILOs 6 and 7, but by nature of these ILOs also touches on the others.

Weight: 20%

67

7 Appendix

7.1 Intended Learning Outcomes Assessment Matrix

In
tr

od
uc

tio
n

to
 C

om
pu

te
r S

ci
en

ce

Pr
og

ra
m

m
in

g
in

 C
 a

nd
 C

++

In
tr

od
uc

tio
n

to
 D

at
a

Sc
ie

nc
e

Ca
lc

ul
us

 a
nd

 E
le

m
en

ts
 o

f L
in

ea
r A

lg
eb

ra
 I

Al
go

rit
hm

s a
nd

 D
at

a
St

ru
ct

ur
es

In
tr

od
uc

tio
n

to
 C

yb
er

 P
hy

sic
al

 S
ys

te
m

s

So
ftw

ar
e

De
sig

n
an

d
Pr

ot
ot

yp
in

g

Ca
lc

ul
us

 a
nd

 E
le

m
en

ts
 o

f L
in

ea
r A

lg
eb

ra
 II

Di
st

rib
ut

ed
 D

ev
el

op
m

en
t

Da
ta

ba
se

s a
nd

 W
eb

 S
er

vi
ce

s

O
pe

ra
tin

g
Sy

st
em

s

Da
ta

 A
na

ly
tic

s

Pr
ob

ab
ili

ty
 a

nd
 R

an
do

m
 P

ro
ce

ss
es

So
ftw

ar
e

En
gi

ne
er

in
g

Ar
tif

ic
ia

l I
nt

el
lig

en
ce

M
ac

hi
ne

 L
ea

rn
in

g
+

M
L

To
ol

s

In
te

rn
sh

ip
/S

ta
rt

-U
p

CS
SE

 S
pe

ci
al

iza
tio

n

M
an

ag
em

en
t M

od
ul

es

Co
lla

bo
ra

tiv
e

So
ftw

ar
e

Pr
oj

ec
t

Ba
ch

el
or

 T
he

sis

Semester 1 1 1 1 2 2 2 2 1-2 3 3 3 3 4 4 4 5 5-6 5-6 5 4
Mandatory/ optional m m m m m m m m m m m m m m m m m me me m m
Credits 7.5 7.5 7.5 5 7.5 7.5 7.5 5 5 7.5 7.5 7.5 5 7.5 7.5 7.5 15 15 10 5 30

Program Learning Outcomes A E P S
acquire Computer Science and Software Engineering knowledge in
an independent, self-governed way x x x x x x x x x x x x x x x x x x

Work in teams distributed around the globe to analyze complex
problems, to evaluate them, and to derive solutions x x x x x x x x x x x x x x x x

Comprehend the processes and tools of Software Engineering for
collaborative, remote software and systems development

x x x x x x x x x x x

Program software in C/C++ and understand algorithms; x x x x x x x x
Be able to use libraries and to generate software in core
Computer Science areas

x x x x x x x x x x x

Apply suited mathematical methods x x x x x x x x x x x x
Understand operating systems, databases, and web applications x x x x x x x x x x x x

Comprehend methods from Artificial Intelligence and Machine
Learning

x x x x x x x x x x x

Understand the relation between software and its links to the
physical world

x x x x x x x x x x

analyze data and to extract insights from it x x x x x x x x x x x x x
apply the acquired Software Engineering skills and Computer
Science knowledge in collaborative, remote projects x x x x x x x x x x x

Use academic or scientific methods as appropriate in the field of
Computer Science and Software Engineering such as defining
research questions, justifying methods, collecting, assessing and
interpreting relevant information, and drawing scientifically-
founded conclusions that consider social, scientific and ethical
insights;

x x

Develop and advance solutions to problems and arguments in
their subject area and defend these in discussions with specialists
and non-specialists;

x x

Engage ethically with academic, professional and wider
communities and to actively contribute to a sustainable future,
reflecting and respecting different views;

x x

Take responsibility for their own learning, personal and
professional development and role in society, evaluating critical
feedback and self-analysis;

x x

Apply their knowledge and understanding to a professional
context;

x x x x x x x x x x x x x

Take on responsibility in a diverse team; x x x x x x x x x x x x x x x
Adhere to and defend ethical, scientific and professional
standards.

x x

Assessment Type
Oral examination
Written examination x x x x x x x x x x x x x
Project x x x
Term paper
Report x x x x x
Poster presentation
Presentation
Various x x x x
Thesis x

Computer Science and Software Engineering (BSc.)

Competencies*

*Competencies: A-scientific/academic proficiency; E-competence for qualified employment; P-development of personality; S-competence for engagement in society

Figure 3: ILO Assessment Matrix

	1 Program Overview
	1.1 Concept
	1.1.1 The Jacobs University Educational Concept
	1.1.2 Program Concept

	1.2 Specific Advantages of Computer Science and Software Engineering at Jacobs University
	1.3 Program-specific Educational Aims
	1.3.1 Qualification Aims
	1.3.2 Intended Learning Outcomes

	1.4 Career Options
	1.5 Admission Requirements
	1.6 More Information and Contact

	2 The Curricular Structure
	2.1 General
	2.2 The Curriculum
	2.2.1 Year 1
	2.2.2 Year 2
	2.2.3 Year 3
	2.2.3.1 Internship/Startup and Career Skills Module
	2.2.3.2 CSSE Specialization Modules
	2.2.3.3 Management Modules
	2.2.3.4 Collaborative Software Project
	2.2.3.5 Bachelor Thesis

	3 Computer Science and Software Engineering Undergraduate Program Regulations
	3.1 Scope of these Regulations
	3.2 Degree
	3.3 Graduation Requirements

	4 Schematic Study Plan for Computer Science and Software Engineering
	5 Study and Examination Plan
	6 Module Descriptions
	6.1 YEAR 1
	6.1.1 Introduction to Computer Science
	6.1.2 Programming in C and C++
	6.1.3 Introduction to Data Science
	6.1.4 Calculus and Elements of Linear Algebra I
	6.1.5 Algorithms and Data Structures
	6.1.6 Introduction to Cyber Physical Systems
	6.1.7 Software Design and Prototyping
	6.1.8 Calculus and Elements of Linear Algebra II
	6.1.9 Distributed Development

	6.2 YEAR 2
	6.2.1 Databases and Web Services
	6.2.2 Operating Systems
	6.2.3 Data Analytics and Modeling
	6.2.4 Probability and Random Processes
	6.2.5 Software Engineering
	6.2.6 Artificial Intelligence (CSSE)
	6.2.7 Machine Learning
	6.2.8 Machine Learning Tools

	6.3 YEAR 3
	6.3.1 Computer Graphics
	6.3.2 Computer Networks
	6.3.3 Web Application Development
	6.3.4 Human-Computer Interaction

	6.4 Internship / Startup and Career Skills
	6.5 Collaborative Software Project
	6.6 Bachelor Thesis

	7 Appendix
	7.1 Intended Learning Outcomes Assessment Matrix

